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Amplification regimes of the orotron: A single-resonator amplifier
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A self-consistent, nonlinear model of orotron amplifiers is proposed for investigating single-stage and
multistage amplifiers. The single-resonator amplifier is studied in detail including linear and nonlinear modes
of amplification. A comparative study of both collective and single-electron interaction regimes is performed.
The fundamentals which determine the level of amplifier performance are identified, and limiting output
characteristics of the amplifier are determined. The theoretical results are compared with experimental data
known to date[S1063-651X98)02605-1

PACS numbdps): 41.60—m

I. INTRODUCTION the optimal design? What are the potentialities of orotron-
_ . . type amplifiers? The aim of our study is to provide answers
The orotron, which is now recognized as an effeCt'Veto these questions through the analysis of small- and large-

source of electromagnetic radiation through the m|II|meterSigna| amplification modes of the orotron for both single-

and submillimeter wavelength bands, was introduced b¥jeciron and collective regimes of the electron-wave interac-
Rusin and Bogomolov in 19661]. Several versions of (ion |n this paper, we derive a unified self-consistent
orotron type devices, referred to as diffraction radiation genmathematical model which is suitable to study both single-
erator[2], ledatron[3], Smith-Purcell free-electron laspt],  resonator and multiresonator amplifiers, as illustrated in Figs.
and planar orotrof5], have also been developed and tested1 and 2. We then apply this model for studying the single-
The advantages of the orotron result from both the use of aresonator amplifier in sufficient detail.
open resonator with a diffraction grating as an oscillatory Our analysis is based on the solution of a set of self-
system, and the exploitation of the Smith-Purcell radiationconsistent equations including Maxwell's equations, the
[6], which is a kind of Cerenkov radiation, for resonator Poisson equation for the space charge field, and the equation
excitation. The beam-field interaction in the orotron com-of particle motion. To simplify these equations, we use ap-
bines peculiarities, which are inherent both in resonance gerproaches which have generally been accepted in the theory
erators, like the klystron, and nonresonance devices with dig?f orotron oscillators. The most important of them are the
tributed interaction, like the traveling wave tube. following: We assume that a single high-mode is excited

Orotron research activities have mainly concentrated of? the resonator, and that the motion of particles follows a
the deve|0pment of autogenera‘[ors_ The physics of their Opstralght line. We restrict ourselves to the case of a nonrela-
eration is well understood, and adequately described due fdvistic, monoenergetic electron beam.
efforts of a number of researcheisee, e.g., Ref§1-14)). When deriving the final equations, we intensively use the
In practice, the most popular orotron design is that with ofact that there are three characteristic time scales which es-
semispherical open resonator containing a grating on thgentially differ in magnitude, namely, the field period, the
plane mirror and a ribbonlike beam skimming over the grattransient time of electrons through the resonator, and the
ing. Such tubes provide tens of watts at the output in afelaxation time of the resonator field. This allows us, as in
8-mm wavelength band, and several watts in a 3-mm banthe case of other resonance devices like lasers, magnetrons,
with electron beams of a relatively low energy of 3 kV and a@nd gyrotrongsee, e.g., Ref§19-232, first to use an aver-
beam current of about 100 mjA4].

It was also clear from the very first orotron experiments, input \'\/\//'output
and from theoretical studid8,15,14, that the amplification @)
mode of operation can be realized under some specific con-

ditions. The results of experimental investigations reported mirror circulator
up to now[17,18 have demonstrated the amplification effect ~

in the orotron. These amplifiers have been built on the basis

of the above mentioned oscillatory systésee Fig. 1, with z

approximately the same values of the beam voltage and cur- electron beam

rent. However, progress in amplifier research is moderate  gjectron ollector
compared to that for generators, both in the development of gun -UTJ_U-U-U_U_U_U_LFI
practical amplifiers and in theoretical studies. So far the am- mirror with

plifier output characteristics in general do not meet practical diffraction grating

needs. The theoretical results on record do not provide clear

answers to questions like the following: It is possible to im-  FIG. 1. Schematic of a single-resonator orotron amplifier with
prove the output characteristics of these amplifiers? What ithe coordinate system chosen.
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input output that propagating in a direction nearby perpendicular to the
grating, and slow waves which are localized in its vicinity.

Provided that the grating period and the wavelength
/] r\ /-I R =2xclw (wherec is the velocity of light meet the condi-
tion <\, they component of the resonator electric field,

pointing in the direction of electron motion, may be approxi-
mated by the following expressid2]:

Ery=Ao¥s(X)¥m(y){ sink(z—D)]
FIG. 2. Schematic of a two-stage orotron amplifier.
aging technique which eliminates the fast-time-scale phe- - ,
nomena, and next to account for the effect of the electron +n:2_x (an/ag)exp(—|ynlz+ikay) ;. 2
beam on the resonator field dynamics through the introduc- n+0

tion of some integral characteristics. Depending upon a spe- ] o ]
cific set of control parameters, the proposed model describederey is the beam axisz is normal to the grating surface;
self-running oscillations, synchronization of the orotron os-P0ints along the grating ruling directiof, is a normalized
cillation, and various regimes of amplification. coefficient to be specified belovk,=w,/c; D is the dis-

The paper is organized as follows. The basic equations arf&nce between the resonator mirrors, which is assume_d to be
given in Sec. Il. The description of the field structure in anconsiderably smaller than curvatures of the mirrarsia, is
open resonator, the derivation of the equations of resonatdpe ratio of space harmonic amplitudés;is the propagation
excitation, the equation of motion, and the space charge regonstant along the grating of theth harmonic, andy,
resentation, which are given in Secs. Il A, IIB, IIC, and = JkZ—K2 is the constant of propagation along thexis.
Il D, respectively, should be considered as a brief review of¥’(x) and ¥¢(y) are functions describing the structure of
methods and approaches usually used in orotron studies. the field, which corresponds to the structure of Gaussian
Sec. Il D, the final system of equations is described. Sectiobheams:
[l deals with the analysis of the single-resonator amplifier. It
includes small- and large-signal analyses, a stability analysis, W o(x) = exp( —X?/r)Hs(V2XITy),
a comparative study of collective and single-electron inter-
action regimes, and a comparison of theoretical and experi- \Ifm(y):exp(—(y—L/2)2/r§)Hm(ﬁ(y—L/2)/ry), 3
mental results. Section IV contains discussion of results and
conclusions. whereHy( ) andH,( ) are Hermite polynomials;, andr,

are the radii of the field spot on the grating in theandy
Il. BASIC EQUATIONS directions, andy=0, andy=L/2 correspond to the plane
where the beam enters the resonator and to the resonator

To study the physics of orotron amplifiers and to calculatecenter, respectively. The sin term in Et@) describes a
their characteristics, we will derive a set of equations selfstanding wave formed due to reflections of the Smith-Purcell
ConSiStently, describing the interaction of an electron beanharmonic at the resonator mirrors. The summation is per-
with the electromagnetic field inside any of the resonators Oformed over all slow-wave harmoniCS' which are concen-
a multistage orotron amplifier. The mathematical model forrated in a thin layer near the grating. The characteristic layer
the single-resonator amplifier depicted in Fig. 1 will then bethickness is considered to be small compared to the mirror

obtained as a limit of this approach. separation. The resonator mode described by(8qjs usu-
ally denoted as quasi-TEM,mode, where quasi stands for
A. Resonator field the perturbation introduced to the conventional field distribu-

gon in an open resonator by the grating, anadn, andq are
mode indexes.

Usually only a single slow wave, which is in space syn-
chronism with the electrons, may exert a direct influence on
EzRe{ér(F)C(t)efiwtfiy(t)_grad e 1) electron motion. We deﬁne th.e wave with=1 to be the

synchronous one. Denoting this waveRg, we can write
its space distribution as follows:

Provided that each of the resonators supports a singl
high-Q mode, the field excited in any of the amplifier reso-
nators can be written in the following forf22]:

Here E,(F) is the spatial distribution of a resonator mode,

andC(t) andy(t) are the amplitude and phase of the mode, E = An(a: /a )W
respectively, which are in general slowly varying functions y1(%.Y:2)=Ao(a1/80) (%)
of time compared to the function exp(wt). o is the fre- Xexp —|y1|2) ¥ m(y)expik,y), (4)

guency of an external signal which is considered to be close

to the natural frequency, of a resonator mode, and the term wherek,;~2/|. It should be emphasized that details of the

grad ¢ describes the space charge field of an electron beanfunction f,(y)=V(y)exp(k,y) are of principal importance

¢ is the field potential. for orotron operation. To describe the corresponding effects,
Because of the presence of a grating, the resonator fieldl is also convenient to use the Fourier presentation for this

contains an infinite number of space harmonics, includingunction:
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% ) nator as well as on the three-dimensional structure of the
fy(Y):(ZW)_”ZJ f(k)evdk, resonator field. To illustrate these dependencies, the norm is
o calculated in the Appendix.

As a final step in this section, we transform E{).to a

wheref (k) is the amplitude of the harmonic wave eiyj, ) i
dimensionless form:

with k being the wave number. Introducing the intensity
function Sy(k)=|f(k)|?, one can find

dF w
Su(K) = (1212 H2(r (k= ky)IV2)exp(— r(k— ky) /2). e f Wo(E) f cog wt( g, £)
©)
Thus the electrons experience a set of harmonicsileRp( —kiryé+ yldeodé+ A cosy,
with continuous spatial spectrum. To set up equations gov-
erning the time evolution of the resonator field, we will self- q
consistently transform Maxwell’'s equations, the equation of Y_ 2m
particle motion, and the Poisson equation by taking into ac- dr 5+ \Ifm(g) sifwt(¢o,¢)
count the assumptions formulated above.
As .
B. Equations of resonator excitation —kiryé+yldeodé— =3 sinvy. 9

To find equations for amplitud€(t) and phasey(t), we
first apply Maxwell’s equations to the single-mode field
given by Eq.(1), and next we eliminate fast varying terms by .
using the standard method of averagi@g]. Since this tech- is the normahzed f|eld strength W'tEO_U /ry, and Uo

nique has been described in detail with respect to a number myg/2|e| is the value of the beam accelerating voltage,
of resonance devicdsee, e.g., Ref§7, 9, 19-22), we give with vq the initial velocity of the beam particles, ardand

only the final result, which in our case reads m thg electron charge and mass, respectively.
=2Qr{lo/(wN;Uy) is the gain parameter or parameter of

dC W, exp(iy) . nonlinearity,6=2Q(w, — w)/ w, is the normalized frequency
dat 2Q, C-R 2Nr " Ji- E do detuning, andA;=2Qb,/(w,Eg) is the normalized ampli-
tude of the external force. It should be noted that the gain
+bgscog y— ¢s), parameteG, introduced in Ref[9], plays a principal role in
the theory of the orotron. An example of its calculation and
dy expliy) [ - -, optimization is given in the Appendix. In order to find an
C a:(“’r_“’)c“”m 2N, J 1Erdo equation for the function=t(¢q,£), which describes trajec-
tories of the electrons we proceed to the equation of motion.
—bssin(y—@y). (6)
Here Q, is the loadedQ factor of the excited model, C. Motion equation
= Sofvér . Efdv is the mode norm witle, the permittivity Under the assumption of a one-dimensional motion of the

of free spacel is the dc beam currenhby is the amplitude beam particles, their trajectory can be influenced by both the
of a possible external signal directly fed into the resonatoraction of they component of the electric field given in Eq.
andt, is the moment at which an electron enters the resona4) and the space charge field of the beam. To take the ef-
tor. Hencet=t(ty,y) is considered as a function of both the fects of finite transverse dimensions of the beam into ac-
entrance timet, and the distanceg. When deriving these count, these fields are averaged over the beam cross section.
equations, the normalized coefficielg in Eq. (2) was cho-  Considering the normalization conditigr), we arrive at the

sen as follows: following equation of motion:

-1 d’y e

1
2(a1/a0)L\I’S(X)A(x,z)exp(—|y1|z)dx dz a2 m f mC cogwt+ y—kyy)+Eqy |, (10

AO:

@)

where A(x,z) determines the electron density distribution Where Eqy=[sA(X,y)Eqy(X,y,2)dxdy is the averagedy

over the beam cross secti@ obeying the following condi- component of the space charge field. _
tion of normalization: Now let us rewrite the motion equation in Lagrange vari-

ablesy and ¢, with respect to

JA(x,z)dx dz=1. (8
S O(¢o,y)=0t(@g,Y) — ¢o— wy/vg, (11

It should be pointed out that, specifyifg,, we remove
an uncertainty in the definition of the norid, which in-  which determines the variation of the electron phase under
cludesA,. In this caseN, becomes dependent on the elec-the action of both the resonator field and space charge waves.
tron beam dimensions and the beam location inside the resdt-is governed by
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Fon= 85[0 80t | ™ expingop) Got ) dp,
15

d?0 _do( 1 dey
a2 |7 g dE

=
X > W n(€)cog P+ 0O+t y)+Fqf.

where  Gy(yy')=—&0S] s/ s(x,2) A(X',2")[($°G/3x?)
(12) +(5%Gl9z%)]dx dz dxdz' is the averaged Green's func-
tion G(x,y,z,x",y’,z") of the Poisson equation, ang' is
Here ®g=wry /vy, ®s=wry(1lvo—1lvy) is_the velocity Kronquer’s symbol. Note that a useful relation holds for the
mismatch parameter withy,,= w/k, andF,=Eg, /Eqis the  COEfficientslyy:
dimensionless strength of the beam space charge field.
The motion equation must be completed with initial con- B d™ o
ditions. If a nonmodulated beam enters a resonator, then nm= 1 dgr (16)

O(pg,£)=dO/dé=0 at (=0 for ¢pe[0,27].

(13 The coefficientd",,,,, with m=0, stand for the conven-

tional space charge reduction factors. The coefficiéhyg

with m#0 determine a nonlocal action of the space charge
peld. However, because of the just quasilocal action of the
Coulomb force, as a first-order approximation, the nonlocal
phenomena can be neglected. The calculation of the coeffi-

Such initial conditions are used for analyzing single-
resonator amplifiers or the input stage of a multiresonato
amplifier. For any next stage, the initial values ®f and

d®/d¢ are in general not equal to zero. In order to specify". . e
their values, it is previously necessary to solve the motio ients given by Eq(15) usually creates no difficulties if both

equation for electrons crossing the drift space, which sepa: ree?hs fgncnon and the,{d'smbmfn of thle ?:]ectron defns:ty
rates the resonators. over the beam cross section are known. In the case of elec-

trons skimming over a diffraction grating, the well-known
] Green’s function of the infinite metallic plane serves as a
D. Space charge field good approximation to this problem. A homogeneous distri-
Generally the space charge field is not a quasiharmonibution of the electrons over the beam cross section can be
but a quasiperiodic function of time. Hence it should be rep-also assumed without serious influence on the accuracy of
resented by a complete set of Fourier components, the I' ,-calculation. On this basis, an analytical expression
was derived fol’,,,,, and for a ribbonlike beam, the result
reads

Eqy=Re X Eqnexp—inot),
=1
" To=1-3/(2a,)+ (2/a,)exp —a,) — exp — 2a,)/(2a,),

whereE,, is the complex amplitude of theth harmonic of (17

the y component of the space charge field. The harmonic ) ) o
amplitudeE,, is expressed in terms of the potential By, whereo,=np.a. a is the beam thickness, which is assumed

= — 9d,,/dy, where the potentiab., of the nth harmonic  t© P& small compared with the beam widih This expres-
obeys Poisson’s equation sion, along with Eq(16), allows us to determine the coeffi-

cientsI' .
qu)en: —pnleo,
E. Mathematical model

The set of equation$9), (12), and (14) describes self-
nsistently the time evolution of the resonator field as well
s its stationary states. The analysis of these equations can
significantly be simplified for the case when the relaxation
Nime t,e Of the resonator field is much larger than the tran-
sient timet, of the particles through the interaction space.

with the corresponding boundary conditions.
A general approach to the solution of this equation, ap,
plied to the study of traveling-wave tubes, was proposed i
Ref. [24]. Later on, this approach was adopted in R§Ts.
25] to the analysis of the space charge effects in the orotro
Following Ref.[25], we can write the final expression for

Eqy, which reads Since t,~Q/w, andt;~2r, /vy, this is equivalent to the
. . inequality
— lo 1
E, = = - | F + -1 m >
qy e{in&‘O n§=:1 n { n(Y)Tno m§=:l ( ) Q>2rywr/v0. (18

Cpm d™ig This condition usually holds for orotron generators and am-
— xXexdg —in(eg+0)];. (14 plifiers studied so far experimentally. Therefore, further
n"Be dy analysis will be based on this assumption.

_ If condition (18) is met, the time variation of amplitude
HereS=1/[ sA?(x,2)dx dzis the effective area of the beam and phasey can be neglected during time intervals of the
cross section, and1=7r‘1fé” exdin(ggt 6)]deg is thenth  order of t;. Separating the processes with different time
harmonic of the beam current normalizedi gt The coeffi-  scales in such a manner, we rewrite E®.for the ampli-
cientsI',,,, are defined by tudeF and phasey as follows:
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dF it is hence omitted in the motion equation. It nevertheless
dr; 71+ GSi(F,y)]F+As cosy, appears in the integral characteristic—the noNp, and
therefore in the gain parameté:. The norm is proportional
dy A, to the energy stored in the resonator, and its value is mainly
—=[6—-GSy(F,y)]+ =sinv, (199  defined by the harmonic of Smith-Purcell radiation. In this
dr F way, it produces an essential influence on the electron-wave
interaction. This fact gives a general enough criterion for
optimization of the orotron oscillatory systems by means of a
S,(F,») 1 (L 27( co minimizat.i.on of the norm valuésee the A.ppend.b_x
{Sz(F 7)] f \Ifm(g)J [ 51 In addition, the Smith-Purcell harmonic, exciting an open
' 0 resonator, forms the structure of the resonator field with
some specific distribution. The slow wave, which interacts
with the electron beam, becomes modulated according to this

called the oscillatory characteristics, are introduced ThesgiStribUtion’ and it appears ihat the detalls of this distri.bution
! ' dre also very important for the electron-wave interaction.

functions in integral form describe the influence of a beam X X i .
on the resonator field dynamics. To determ8éF,y) and Solylng Eqs.(lS_))—(Zl), one can directly find the time
. ) behavior of amplitudeF(7), phase y(7), and frequency
S,(F,y), the motion equatiorfl2) must be solved for the = . P~
. w,(7)=0w+(w,/2Q)dy/dr of an excited oscillation and/or
values ofF and vy, and for¢ye[0,27]. Let us rewrite the th/é Corresponding. stationary values: and
equation of motion by taking into account expressid#) long with Ft)his it?s usuall dZsired to sctélc)ﬁltéte owwgrStc.har-
for the space charge field, but without the terms describin g with this, it 1S y . p
cteristics like efficiency, power, and gain. The general ex-

the nonlocal action of this field: ; X
pression for the powelP, stored by some resonator mode, is
3(Ed [22] P,=w;N,;C%(2Q), where Cy means dimensional
) {TO V(&) cogPE+ 0+ gt y) steady-state amplitude of the figlt). In terms of the dimen-
sionless amplitudé- and the parameteB, this expression
can be written as

where functions

4wk 0 sin

X(Ps&+ 0+ oot y)deodé, (20

a20_ 14 1 96
P by 9&

2 e}
Pb I'ho sz . ~ ~
-— — sinn[ @g— @ot+ 6(¢g,
- ngl n Jo (o= ot 8(¢0,&) Pr=P0F§JG, 22)
— 0(¢0,&)]dP0 ! - (21) where P9=I0Uo is the beam power. Erom this, we have an
expression for the electron efficiency:

Here p,=w,ry/vo, Where w,=[|e|Jo/(meqr)]¥2 is the n=F%G. (23)

plasma frequency. For the sake of further convenience, let us

list all other control parameters of the modelG  The dimensionless amplitude of the input sigAalis deter-

=2Qrilo/(wN;Up) is the gain(nonlinearity parameter mined by the power of the input signgl,, to be amplified

(see the Append)x ®,= wr /vy is the transient angle or the in the following way:

dimensionless radius of the field spot on the gratidg;

=owry(1/vo—1lvy) is the velocity mismatch parameter; Agz(G Pin/Po)(1—1T]?), (24)

I'o, (n=1,2,3...) are thespace charge reduction factors;

Wn(€) is the mode amplitude distribution in the direction of whereT is the reflection coefficient at the resonator input

particle motion; 6=2Q(w,—w)/w, is the normalized fre- terminal. This expression allows us to find the amplifier gain

quency detuning between the natural frequency of an excitegl the output power is known.

mode and the frequency of an external signal; Agds the The set of equation§19)—(21) will be used in the next

normalized amplitude of an external Signal. Itis ObViOUS, tha%ections to Study Sing|e-resona‘[or orotron amp”fiers_ It

these parameters must be specified for each resonator in tBRould be noted that, in this case, a significant simplification

case of a multiresonator amplifier. of these equations can be achieved by virtue of the following
The self-consistent set of equatiofi®)—(21), depending  fact. Since there is no preliminary beam modulation, the

upon specific values of the control parameters, describeginction® (¢,,&) depends on the sug= p,+ y only rather

regimes, self-running oscillations, synchronization of oscilla-gqs, (19),

tions, etc. It is worth noting that this model is also applicable

to other types of resonance devices like the resonance dF

backward-wave oscillator and the klystron with distributed d—=[—1+ GS,(F)]F+ A cos vy,

interaction. Because of this, the natural question arises: T (25)
Where do the peculiarities of the orotron manifest them-

selves? From the physical point of view, the main distin- d—7=[5—GSZ(F)]+ E sin y

guishing feature of the orotron is the availability of a har- dr F '

monic of the Smith-Purcell radiation, which produces the

internal feedback and provides the energy output. This hamwhere the oscillatory characteristics depend on the field am-
monic exerts almost no direct action on particle motion, andlitude only:
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{Sl(F)J 1 JL 27(co =w[1+GPR,(P4,p)] the resonance frequency of the “hot”
vuie [ 1]
0

S,(F) = sin resonator. The functionR; andR, in the general case read
0

I IR CIR
0

co ,
{S"j(@d p)(£—¢)

Thus the right side of these equation dependsyoim an

explicit form, which obviously simplifies the problem of co , ,

stupdying single-resonator amglifiers? P _{ sirj(q)s_ P)(&—¢ )}dg dé, (29

Another limiting case should be noted which corresponds

to the self-running orotron. Settings=0, we find that the where p=\/1“_1owpry/vo is the space charge parameter.
field dynamics is described by a single amplitude equation These functions go back to the linear theory of the orotron
oscillator[2,7,26. The functionR,(®,p) is proportional to
the power deliveregor absorbetlby the beam. It is pertinent
to make some comments concerning general properties of
this function. In terms of the spatial spectral intenSty(k)
whereas the second equation is transformed into a direct fofsee Eq(5)], expressiorf29) for R;(P,p) can be written in
mula for the instantaneous frequency of oscillati©p(r) an alternate fornfsee also Refd27, 28):
=w+(0,/2Q)(dy/d7)=w,[1-(G/2Q)S,(F)]. Equations

dF
G =[~1+GS(F)IF, @7

(26) and(27), or similar relations, have been intensively used R1=(7r/32pr§)(81_ - SI). (30
to study single-mode operation of orotron oscillat¢®s- ~
11,25. Here S;zsm(k)|k:k§ are values of the intensity calculated
for k equal to the propagation COI’]Std(E_IZ(wi wi’J)/vo of
ll. A SINGLE-RESONATOR AMPLIFIER the slow and fast space charge waves, respectively, where

o) =T 1w, is the reduced plasma frequency. It is evident
from Eq. (30) that the slow wave always gives up its energy
to the resonator field, whereas the fast wave always absorbs
e resonator energy.

To realize orotron amplification in the simplest way, one
may use the conventional single-resonator orotron desig
just by transforming it into a reflection-type amplifier, as has

schematically been shown in Fig. 1. Up to this day such arlih
y g P y Two limits of expression(30) are worth discussing in

amplifier have mainly been studied experimentally,18. : . ) ; O .
Here we will analyze both the small- and large-signal opera™°re detail. The first one is the single-particle interaction

tion modes of this amplifier for collective and single-electronf€dime, which is defined by;/vo<Ak (Ak is an charac-
interaction regimes. teristic width of the spatial spectrum of a synchronous

wave), so that, from Eq(30), we obtain

A. Linear analysis 7 dS,(K)
The single-resonator orotron amplifier shown in Fig. 1 is 15763 dk | (3D
described by the system of equatiof®l), (25), and (26) y k=B

with the initial conditions(13) for the equation of motion. o

This system is amenable to analytical treatment for the casdere the derivative is evaluated fér equal to the wave
of a linear mode of amplification. To find this solution, we NUMberS.=w/v, of a wave on the beam. Amplification of
start from the motion equatiof21). To first order in ampli-  ©scillations may occur only itlSy(k)/dk|x—z >0, which

tudeF, its solution reads physically means that in the vicinity df= 3., the spatial
; harmonics with a phase velocityw(k) less thanv, have

_ N Y larger amplitudes compared to those witlk>vy. For m
0(¢.) (¢>0F/4p)fo Vm(&)sip(6=¢)] =0, the optimal value of®g, maximizing the function

R;(®,0) and the amplifier gain as well, reads
Xcog o+ d£)dE,
. - . 8 opt— — 1 (32
which, after substitution into Eq€$25) and (26) and some
algebraic manipulations, yields the following equations for  Note that the inequalitd S,,(k)/d k|- >0 may be con-

the resonator amplitude and phase: sidered as a generalized Cerenkov radiation condition, or it
= may be treated as the inverse Landau dampR@]. This
—=qayF+Aq COS Y, condition enables one to determine, just from the form of the
dr (28) function S,,(k), a range of varying3., where amplification
may occur. It follows, e.g., from Ed5) that, form=0, B,
values must fall within the intervad; — Ak/2< B.<k; [Ak
~1Iry is the characteristic width of the spatial spectrum
Sn(K)] in order that amplification occurs. Far>0 the op-
Hereag=G®yR,(P,p)— 1 is a dimensionless rate of am- eration zone with respect {8, (accelerating voltagds split
plitude damping &,<0) or growing (@y>0), and §, into m+1 subzones, since in this case the functiy(k)
=2Q(wg—w)/w, is the frequency detuning, withwg hasm+1 maxima.

dy Aq
—_— J’_ —
) =

P sin v,
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The second limiting case corresponds to the collective
electron(Raman interaction regime with 2){,/ vo>Ak when
Ry=[7/(32pr))]S; , (33

provided that the value ofu{+ wp)/vg is close to that ok; .
The optimal value ofbg, for this interaction regime, reads

S opt— — P- (34)

The range of the3,, variation form=0 [see Eq(5)] is de-
termined here by the condition

—AKR2< Bt wpl vo<ki+AK/2.
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This range can be approximately two times larger than in the FIG. 3. Power gain vs normalized beam current for single reso-

previous case.
Now we return to Eqs(28). They can be solved analyti-

nator amplifier. Solid line—theoretical results; circles—

experimental datfl17,1§.

cally for the general case; however, we write only an expres-
sion for the amplitude of the steady-state oscillations, whictwhereJ=G/Gy,, andl'=1-2Q,/Qq is the reflection coef-

is

Fo=As/(aj+ 85)Y2. (35
The stable amplification regime can be realized onlyf
=GO R, (P,,p) —1<0; otherwise a self-excitation of the
oscillations occurs in the device. The threshdésdarting
value of the paramete® for self-excitation of the oscilla-
tions is given by

1
PoRy (P

32pr}
7TP(S; —S7)

Let us now consider the amplification properties of the:
single-resonator orotron amplifier. Since this device is
reflection-type amplifier, we can use the following general
expressions for the maximum midband gga9]:

Gin=

P (36

K=Qi(2Qaeq—Qn M2, (37)
and, for the half-power bandwidth,
Aw=wy/Qy. (39

Here Q. is the external) of the resonator, an@y, is theQ
factor of the “hot” resonator, which includes all losses and
their compensation due to an active medium in the resonato
It is easy to show, using Eq$28), that in our case&,, is
given by the following expression:

Qn=Q/[1-GPoRy(Ps,p)]. (39
For the resonator without beam we ha@g=Q,, where
Q; '=Q,1+Q, ! is the loaded factor, withQ, being the
unloaded resonat@. Now, taking into account E¢36), we
can rewrite Eqs(37) and(38) in terms of the orotron ampli-
fier control parameters

K=(+J)%(1-J)?, (40)

Aw=wy(1-I)/Q,, (41)

a

ficient at the resonator input terminal. This form of presen-
tation conveniently illustrates a typical feature for any
reflection-type amplifier: an increasing gain and simulta-
neously decreasing bandwidth while approaching the thresh-
old for self-excitation of oscillations. It should be noted that
in the single-particle interaction regimp<£0), the function
R.(®¢,p) does not depend upon the beam current value. In
this case and for a particular orotron amplifides1o/1g
(19 is the threshold value of the beam curpeifithe beam
currentl is considered as a variable parameter. This allows
us easily to compare the analytical dependencids(d) and
Aw(J) with corresponding experimental results. An example
of such a comparison is given in Fig. 3, where the relation-
ship between the amplifier gain add as given by Eq(40),

is displayed along with results of experimental investigations
of 8-mm wave band amplifier with),=2.5kV, |,4,=32.5

mA, andI’=0.35, which were described in R¢fL7]. Prac-
tically the same experimental data were obtained in recent
experiment$18], with another design of the single-resonator
orotron amplifier. Thus we can conclude that expres§in

fits the experimental data fairly well. In the latter case, the
amplifier offers relatively high gain; the increase in the gain
is, however, accompanied by a decreasing amplifier band-
width according to Eq(41). In this parameter region, non-
linearities of the electron-wave interaction may, however,
have a pronounced effect on amplifier operation, so that they

F,hould be taken into account.

B. Effect of nonlinearities on small-signal amplifier operation

To study effects of nonlinearities on the small-signal am-
plifier operation, we take into account the first nonlinear
terms in theF-power expansion of function§,(F) and
S,(F) [see Eq{(26)]. This gives the following equations for
the amplitude and phase:

dF )
ar =[ag— a1F°]F+Ag cos vy,
(42)
d A
o =[5= 8,F?]+ Zsiny.
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Here a;=®3GR;(dg,p) and 6;=PIGR,(P,p), where

1
Ra4(®s,p)=(1/4) j U (€)(XE+X5)[ Xp,1 cOL D)
0

FXq,2 Si(@4§)]d¢,
X1(Ps,p) _i ¢ L L
(xzubs,p))‘ap [Swensitpe-e
cog b))
X(Sln(q)sg/) dg .

The &4 dependence of functior?; andR,, along withR;
andR,, is shown in Fig. 4 for the single-electron interaction
regime p=0) and a resonator mode with= 0. It should be
noted that the functiofiRs is positive at® <0, i.e., in the
amplification region wher&,>0. Hence the nonlinear term
in Eq. (42) with R; describes the effect of a dissipative non-
linearity, whereas the second nonlinear tefnith R,) de-
scribes the effect of a reactive nonlinearity.

SettingdF/d7=dy/d7=0 in Eq. (42), we find an equa-
tion for the amplitude-;:

[(ao— a1F2)%+(8o— 6,F2)?IF3=A2, (43)

st

L Iy \
-1.0 -0.5 0.0 0.5 1.0
)

FIG. 5. AmplitudeF; of steady-state oscillations vs frequency
detuningé for different values of the normalized input powét)
Pin/P0:732 dB, (2) Pin/P0:728 dB, and (3) Pin/PO:
—12dB forJ=0.6, and® = —0.657, ®,=25, p=0, andl'=0.
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This is a cubic equation with respect i, Hence the am-
plifier can have one or three stationary states. The latter case
is realized for some region of th&, variation only if the
following conditions are simultaneously met:

8lag|3(82+a?) |2
S CTE 3 ’ (44)
3‘/§(| 51| _‘/ja'l)
|81|>V3a;. (45)

Thus, for multistationary states to arise the signal amplitude
A should be in excess of the valdeg, given by Eq.(44). In
addition, the parameter of the reactive nonlinearity should be
larger than some limit, which is determined by the dissipa-
tive nonlinearity given in Eq45). When condition$44) and

(45) are met, thes dependence of the steady-state amplitude
F: (resonance curve of the amplifies characterized by the
existence of a hysteretic loop, which is illustrated by curve 2
in Fig. 5. The resonance curves in this figure have been
found from the solution of the initial systef25), and there
behavior is sufficiently well described by the approximate
model of Eq.(42) provided thatA; is not too large. At large
values ofAg, higher nonlinear terms, which are not included
in Egs.(42), manifest themselves. This leads, for example, to
the effect of suppressing the bistability, which is illustrated
by curve 3 in Fig. 5. This effect is not described by Ed=®).

It is easy to show, by using the standard stability analysis
of equilibria, that in the hysteretic region the states with the
largest and smallest values of the amplitude are always
stable, whereas the third state is always unstable. Hence, in
this case, the amplifier is altered to a bistable device, and the
one-to-one correspondence between the amplifier input and
output is violated. This can be considered as a specific form
of amplifier instability(see Sec. Il ¢

Let us now consider the case when the amplitddes
below the critical level, so that the one-to-one correspon-
dence is preserved. Here Eg.3) can be solved by using a
successive approximation procedure and by considering the
termsa,F2 and 6,FZ as a perturbation. Choosing the value
of F from Eq. (35) as first approximation, the second ap-
proximation reads

0
J=0.95
25F X % x
X
0.91
g%y )
- X
]
15}
0.77 X
 oumn X X X
10}
X
5 L L 1 i i
103 102 10! 10° 10! 102
Pin (mm

FIG. 6. Power gain v®;, according to Eq(47) (solid lines and
experimental datdcrossey for different values of) at ®,=—1,
I'=0.35,U,=2.5kV, lgy=32.5 mA, andd,=100.
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2 2\2]-1
1A 1Ms Qr
F2=AZ| ag— +| So— 46 =
st s<ao pr (o Py (46) RU—————

As one can expect, the amplitude of the forced oscillations - Qr )

has always a finite value because of the nonlinearitiesall 1-G®gR;(Ps,p) + GDGRs(d,p)F?

that @p<0 and a,>0), and the central frequency of the

amplifier becomes dependent on the amplitude of the input

signal. To find an expression for the amplifier gain, we agaimfter the substitution of this expression into E&7), and
make use of Eq(37). The Q factor of the “hot” resonator some transformations, we arrive at the following formula for
Qy, can in this case be found from E@?2). The result reads the gain:

(I'+J)?

K 37 37(1=3) 2 o(1= TP (P Po) [ Re(Ps P IRE(Da p) 12 “7

The relationship between the input powd?;{), the beam particle interaction regimep=0. The curve ®yGy,
power (Po), and the amplitudé\ is given by Eq(24). The  —[R, (d,,0)] !, separating stable and unstable regions of
dependence ok on Pj,, as given by Eq(47), is shown in  gperation, is plotted here for the case=0. Note that, for a
Fig. 6 for the single-electron-interaction regime @t=  practical amplifier, the variation of the paramedey may be

—1, '=0.35, andd,=100. Thisd value is optimum for  related to an accelerating voltage variation, whereas the pa-
the linear case, and the chosép andI’ values are approxi- rameterG is proportional to the beam current value. The
mately the same as in the above mentioned experimiédils  ampiification (<>1) may occur only ifd.<0. Expression
The corresponding experimental results given in Fig. 6 are inaq) for the amplifier gain is valid for anp-value in this
good agreement with the theoretical curves. As can be seq@nge, but to obtain a higk value with a minimum beam
from this figure, the effect of the input power is increasedcyrent, the parameteb must be chosen a® = Dg oo,
when theJ value approaches unity, i.e., when the beam curyhere ¢ opt IS given by Eq.(32), and the corresponding
rent approaches the threshold valyg,. The increase in the  minimum value of the paramet@y, is

input power leads to a gain lowering effect, as can be seen

from Eq. (47) if we take into account thaRs(®P,p)>0 in

the amplification regime. The dynamic range of the amplifier Gih min=17/0. (49

is dramatically reduced when the amplifier is operated near
threshold of self-excitationJ=1). The increase of the tran-

sient angle® also contributes to decreasing the dynamical :,:::(
range. 92005002020 0200000090000
’ RS
. . 000000000 0.0:0.099.9.0:0.0,
900,90, 0-00.0.0°0.0:0.0.9:0.9:0.0,0¢
c-sablly anss RS
From the point of view of the theory of dynamical sys- ’0’0’0’0’0’0‘0’0’0’0’0’0’0’0’0’0’0‘4 Ja

tems, instabilities in an amplifier are due to bifurcations oc-
curring in the system. In the framework of the mathematical
model (25), three types of bifurcations may be responsible
for instabilities, namely supercritical and subcritical Hopf bi-
furcations, and the saddle-node bifurcation. Rigorous math- |
ematical definitions of these bifurcations can be found, e.g., |
in Ref. [31]. We will deal here with their impact on the :
dynamics and stability of the amplifier. | |
I
I
[
1

T

Let us start from the supercritical Hopf bifurcation, which
leads to a soft self-excitation of oscillations. The tesoft
stands for the fact that the state witl=0 becomes unstable, ;
and an arbitrary small perturbation initiates the orotron os-  -3%/4 Qs m/2
cillation generation. According to the stability analysis of 10)]
system(28) or (42), this occurs when the, value becomes
positive. This gives the following stability condition:

|
|
[
l

/4 D,p 0

FIG. 7. Regions of stable and unstable amplifier operation in the
parameter planed§,G,®;). In the doubly and singly shaded re-
G<GthE[q)0R1((I)svp)]_l- (48) gions, soft and hard types of self-excitation of oscillations occur,
respectively. Vertically dashed lines denote the boundary of the
It is convenient to analyze this condition on the parametesaddle-node bifurcation onset. Regidn, <®.<®y is the safe
plane @,G,®.), which is shown in Fig. 7 for the single- region with respect to this bifurcation.
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By using Eq.(A15) for the norm of a quasi-TEM, mode, Additional limitations for the choice of the paramet®r
we find the following expression for the minimum threshold as well as of other parameters result from the saddle-node
value of the beam current: bifurcation onset. This bifurcation manifests itself in the fol-
lowing way. If the amplitude of an external signahd
e\ " (q+12r04 ., passes through some critical valud.), a stable state is
Loth min™=0- m wrf§WQr Ug™. (50) split into three states: two stable states and an unstable

(saddle state. In terms of the amplifier resonance curve, this

Here W is the wave resistance of the free space, and thés exhibited by a hysteretic loop shown on Fig. 5. It should
coefficient ®,>1 takes the finite width of the grating Pe stresse.d that eaph of these stable states corresponds to
grooves into accourjsee Eq(A9)]. When deriving this ex- forced oscillations with the frequency of the external signal,
pression, beam thickness and beam widthb have been @nd, opposite to the Hopf bifurcations, a self-excitation of

chosen to be optimurfsee the Appendix and read oscillations does not occur. However, the simultaneous exis-
tence of two stable states with different values of the output
b=0.8,, a=1.2vy/w,. (51) amplitude is undesirable for most amplifier applications.

Also, as follows from general results concerning the stability

In the following, these values are used for the analysis an@f quasiperiodically forced systeri32], in this case chaotic
the amplifier parameter estimates. Recall that the physicaiscillations may easily arise when a real multiperiodic signal
meaning of these values is as follows: They maximize thds applied at the amplifier input.
gain paramete6 for a given value of the beam density. Approximate conditions for the occurrence of the saddle-

In the collective-electron interaction regime, the param-node bifurcation are given by Eq&t4) and (45). Note that
eter plane ¢ ,G,®,) has in general the same structure as inEd. (45) is equivalent to the following one:
the revious case. The threshold curveb G
:[Rl(%)s’p)]_l for p>1 reads o= |\P4(q)srp)|>‘/§q,3(q351p)- (54)

Referring to Fig. 3, we find that for the single-electron inter-
action regime this condition is satisfieddf, is outside the
interval

DGy = (64p/ m)exel (Ps—p)?/2].

Thus a minimal value o6y,, equal to

Gy = 64pl (D), (52 0.55r=d, <P <P =—-0.17. (55
_ ) o ) The corresponding boundaries of the regions where the
is obtained at®s op=—p, which is equivalent tk™ =k.  gaddle-node bifurcation may arise are also indicated in Fig.
Making use of Eq(A15) and of the definitions of the param- 7 To avoid the onset of the saddle-node bifurcation and of
etersp, ®o, andG, we rewrite Eq.(52) with respect to the  the related instability, one should try to choobeg (the ac-
minimum value of the threshold current for the case of 8celerating voltagewithin the “safe region” given by Eq.

quasi-TEMq, mode (55). It is easy to remove the threat of this instability for
5 5 ) small-signal amplifier operation, since, for this case, the op-
| 3y 10P e0CT 1o(q+1/2)“Uor,®§ (53 timal value of®,= —1 is within that region. However, in the
oth min o 15Q7 case of large-signal amplifier operation, optimal value®gf

are less than-1, and they may be located outside of the

As was mentioned before, in the region above the threshsafe region.” For this case, the instability may manifest
old curve in Fig. 7 (double-shaded regipna soft self- itself even ifJ is relatively small, for instance, as in Fig. 5
excitation of oscillations occurs in the orotron. However, the(see curve 2 Curve 3 in this figure illustrates a possibility to
hard type of the orotron self-excitation may also be realizedsuppress the instability of this type. As follows from the
and the subcritical Hopf bifurcation is responsible for thisinitial model(25), when the power of the input signal is large
process. Unlike the previous case, the occurrence conditioreough, the hysteretic loop on the resonance curve disap-
cannot be found here analytically from a small-signal analypears. This phenomenon is a principally nonlinear one. Thus
sis. It can only be noted that, far=0, this type of excitation the discussed instability may appear if the amplitude of the
may be realized only i < ® in. Direct numerical studies input signal lies within an interval <A;,<Apax, Where
are necessary to determine the location of regions in the pa, is approximately determined from E@i4), andA,,,, can
rameter space where the hard excitation of oscillations takdse found numerically.
place. The corresponding region is shown on the parameter The results of this section clearly indicate that values of
plane in Fig. 7. In this region, the trivial statE £0) of the  the control parameters, which can be used for an amplifier
autonomous systermA(=0) is stable; a stable periodic orbit, design, are seriously limited by instabilities of various types.
however, also exists in the phase space of sys@sn An  In particular, the self-excitation of oscillations and other in-
external signal of finite value can trigger the system from thestabilities are factorgbut not the only ongswhich limit
trivial state on the periodic orbit to cause the excitation ofessentially the maximum beam current value which can be
orotron oscillations. As can be seen from Fig. 7, the hardised in a particular design. Referring to Fig. 6, we note that
excitation of oscillations occurs at lower values of the pa-for ®¢ from the region® < ® .= —1, an operating value
rameterG as compared to the soft excitation. This leads to af the current can be large then the minimum threshold cur-
decrease of th& values which may be used for the ampli- rent which is achieved ab = —1. As is also seen from this
fication regime. figure, such an increase in the current cannot be too large due
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FIG. 9. Maximum electron efficiencgsolid curve$ and maxi-
mum gain(dashed curvesss P, /P, for various values of the tran-

FIG. 8. Schematic of the spectrum-shape funcgk) for m s_ient ang_le:(l) (DO_Z 25, (2) ®o=50, and (3) (=100 atJo
=0 with its maximum atk=k, and the location of the optimal ~0-95,P=0, andl'=0.
value of the beam wave number in the linear interaction regime

k, k

(Be opy @nd in the nonlinear regimese). been reported with respect to various kinds of free-electron
lasers and conventional microwave tulp8®,34.
to the limitation on the minimum value @ imposed by the Let us now consider the effect of thk, value on the

instabilities. Due to this we accept th@n min andloth min:  orotron amplifier performance. In Fig. 9, maximum effi-
given by Eqgs.(49 and (50) for the single-electron interac- ciency and gain are shown versBs /P, for various values
tion regime and by Eqs52) and(53) for the collective one, ot ¢ The “maximum” hereinafter means that the param-
are the maximum posglble valu.es of the par gn@talnd the eters® (the accelerating voltageand & (frequency of the
beam current for nonlinear regime of amplification. input signal have been chosen to be optimum for each par-
ticular set of parameters. It can be seen from Fig. 9 that when
D. Large-signal amplifier operation the input power is relatively small, the efficiency and gain do

Before going into detail about the large-signal amplifica-not practically depend o, as predicted by the linear
tion mode, it is appropriate to remember some general progheory. This dependence, which is pronounced at a large
erties of electron-wave interaction in the orotron-type tubeslevel of the input signal, leads to an increase in efficiency
In the linear regime, the amplifier gain and output power areand gain with decreasing,, in accordance with the argu-
determined by local properties of the functiog,(k), ments given above. It should be noted, however, that the
namely, by the value of its derivative calculatedkat 8,  variation of » andK with the ®, variation is essentially slow
[see Eq(31)], because any variation of the electron velocity compared to that of @, even if P;,~P,. The reason for
by the action of the field is small. In the nonlinear regime,this is related to the fact that it is impossible to trap most of
the effect of the mean velocity decrease of the electrons is ahe electrons entering the resonator into a potential well dur-
principal importance. Introducing theurrent propagation ing a time period if the same interaction space is used for
constantBe cul . y)=w/v(¢.,y), we may treat this effect as poth the beam modulation by an external signal and the de-
a diffusion of theBe cu{¢,y) values in the wave package celeration of the electrons by the resonator field. The latter
toward a peak of the spectrugiy(k) (see Fig. . The maxi-  gis0 does not allow one to reach high values of gain and
mum value 0fBe cu(¢,y) is limited by the value oky, since  efficiency simultaneouslysee Fig. 9, because the optimum
at Be cu> Ky the Cerenkov radiation condition is not fulfilled, et of parameters for effective modulation and bunching is in
and the eI(_actrons cannot_be decelt_arated any more. T_he m”lj'eneral quite different from that for effectively decelerating
mum possible value o is determined by the capability of 5 gjectrons. To obtain high values for the efficieié9%

a wave spectral component wiki= S, to trap into a poten- and highey, large levels of the input signal are necessary,

tial well an essential portion of electrons from those enterinqNhiCh naturally leads to a decrease of the gain. It is obvious
the Interaction space during the field ime period. The PrO%hat, to get rid of this problem, a preliminary m.odulation of
cess of trapping is a threshold phenomenon, and the ampL- ' '

tude of this spectral component must overcome a critica he beam must be used, like in conventional klystrons or

value[33]. From Fig. 8 it is clear, that because of this thresh- lystrons  with d‘S"‘b‘%te‘?' interactions.  Our apglysis has
old, the maximum value of the differencé, 8) for m shown that a dramatic improvement of amplifier perfor-

=0 is of the order of\k~1/r,, which is the bandwidth of mance can be obtained even by using the two-stage amplifier

the spectrunS,(k). Utilizing the estimates given above, one d€sign shown in Fig. Zcorresponding results will be pub-
can obtain the following scaling low for the maximum effi- lished.

ciency in the nonlinear interaction regime However, it should be pointed out that the single-
resonator orotron amplifier may also be of practical interest
Nmax™ VoM (CTy) OF a2/ Py (56)  when taking into account the simplicity of its design. Hence

we will give some more details to describe its performance.
Such a dependence of the maximum efficiency on the waveAn expression for the maximum output power in the single-
length or on the transient angte,=2m(r,/\)(c/vy) has electron interaction regime may be written in the form
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[Ap=27vo /(NI 10wp) is the beam plasma wavelengtlt is
" //_\ 1 seen from this figure that the efficiency peaks at some value
_—— of thg parametep (plasma frequenOyThe physical reasons
I R e 1 for this are the following. In the collective electron interac-

B L tion regime, the electrons are trapped by the spectral compo-
nents from the “left tail” of the spatial spectrufsee Fig. 8.
10 Then electrons can transfer some amount of their energy to
the resonator field due to the decrease of their mean velocity,
like in the single-electron interaction regime. There is, how-
ever, an essential difference between these two cases, which
lies in the fact that in the Raman regime, the interaction of
0 : : : . the slow space charge wave with any of the spatial spectral
00 05 1o 13 20 components of the field leads to an energy extraction from
ry//lp the beam[see Eq.(33)], i.e., not only with those where
dS,(k)/dk>0 atk= . as in the single-electron interaction
regime. Due to that the decrease of the velocity of electrons
during their interaction with the field can be larger, which
can result in a rise of the efficiency. However, the space
charge field can also affect electron-wave interaction in an
opposite way, which may be approximately described as the
. retarding of the formation of compact electron clusters
ryQ needed for an effective deceleration of the electrons. Both
effects—upgrading and degrading of the amplifier perfor-
mance due to the space charge field—are seen in Fig. 10.

provided that the beam current value is equal to the maxiﬁowever, the increase of the efficiency is not too large com-

mum possible value given by E@0), and the dimensions of pared to the smgle—electron Interaction regime. . .
. S The presented results give also evidence that in a wide
the beam cross section are optimal=1.2vy/w and b

~0.8r,. The maximum efficiency is a function @b, and range of the plasma frequen@yeam densityvariation, the

the normalized input power as illustrated in Fig. 9. To illus- space charge effects do not impose serious limitations on the

trate typical values of the parameters involved here, let ugfﬂuency. For example, for the above considered 3-mm

consider an amplifier at=3 mm with 16-kV electron beam Wave amplifier with a beam density of 110 A/tand a ratio

B _ ry/\,=0.05, the space charge effects are practically negli-
Yf? eltﬁgswzndozgreast%r;a:%(\jl\gﬁn ;ﬁis SC;nSrg, ge tgg% aCE?renpible. It shou_ld be r_10ted that for the case of reIativeI_y lgrge
value mg; be as high as 380 mA with a density ofvalues (practically it corresponds tp= ), the maximum
110 Alen?. Such a device could provi’de a gain of 14 dB possible value of the beam current which can be used in the

with an efficiency of 7% and an output power of 400 W, Orcollectwe regime is given by Ed53).

a gain of 8 dB with an efficiency of 18% and an output

power over 1 kW depending on the level of the input signal. IV. DISCUSSION AND CONCLUSIONS

With the same beam voltage, current density, and resonator . )

parameters, a reduction of the operating wavelength by four [N this paper, a mathematical model of orotron-type am-
times, i.e., to 0.75 mm, will lead to a lowering of the effi- Plifiers has been presented, which is general enough to de-
ciency by a factor of 2 and of the output power by a factor ofScribe various amplification regimes in single-stage and mul-
8. According to Fig. 9 and Eq57), in order to reduce the fistage amplifiers as well as self-running oscillations,
effect of the wavelength on the amplifier performance, onéSynchronization of oscillations, and frequency conversion
should try to decrease the radiug, correspondingly in- depending on the choice of the control parameters. In the
creasing the beam density. In this case, it necessary to tafgear mode of amplification, the model equations are solved
into account that the limiting value of the beam density mayanalytically for both collective and single-electron interac-
not only be determined by rising self-running oscillations,ion regimes when studying the single-resonator amplifier.
but also by other factors like emitting capabilities of a cath-Effects of nonlinearities on the small-signal operation mode

FIG. 10. Maximum electron efficiency vs,/\,=p/2m for @,
=25 (solid curve$ and®,=50 (dashed curvedor different values
of the input power: (1) P;,/Py=—15dB and (2) P;,/Py=
—25dB atJ,=0.95,0,=1.2, andl'=0.

|e|)1’2(q+ 1/2Nr,04

F)out max— 14‘80< E

XU mad o, Pin/ Po), (57)

ode and space-charge effects. have also been studied analytically. These theoretical results
If the density is limited by the emission capabilities of a N@ve been compared with experimental data obtained so far
cathode, we then have for single-resonator amplifiers, and both qualitative and
gquantitative correspondences have been found.
Pout max:;(o_z/c)‘/|e|/m\]0rx)\ug’277max(q>0,pin/po), Simulations of the large-signal nonlinear amplification

mode have been preceded by a detailed stability analysis of
Here the output power depends on the accelerating voltage #ise amplifier. Soft and hard excitations of self-running oscil-
to a smaller degree than in the previous case, but the depelations along with arising bistable states are three main types
dence on the wavelength remains the same. of instability of the amplifier. The first two of them impose
To illustrate the space charge effect on the amplifier perfimitations on the maximum value of the gain parameter
formance, we start from Fig. 10, where the maximum effi-(beam current valye which can be used in the amplifier.
ciency is plotted as a function of the ratig/N,=p/2w  The third one is related to anharmonic properties of the reso-
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nator loaded by the beam. The bistability may occur in somevith a grating similar to that widely used in orotron oscilla-

regions of the amplifier operation zone with respect to theor design[1,2,4] (see also Fig. 11 In the general case, the

accelerating voltage, even if the parame®iis essentially norm is defined as

lower than its threshold value.

_ It shoqlq be gmpha;_i;ed, howev_er, that in pract_ical am_pli— ersoj Er-éfdv. (A1)

fiers additional instabilities may arise due to the interaction v

of resonator modes. So far this interaction has been only

studied with respect to the stability of orotron oscillators The expression for thE,, component of the field is given

(see, e.g., Refd.13,14)). The corresponding analysis with by EQ.(2). The other nontrivial field components, which are

respect to orotron amplifiers is an unsettled problem. H.x andE,,, can be easily found from Maxwell’s equations.
The investigation of the large-signal amplification mode When performing the integration in EgAL), it is pos-

has shown that, in the single-resonator amplifier design, it isible to neglect the direct contribution from the slow waves.

impossible to simultaneously obtain the maximum possiblelhis is apparent from the fact that these waves occupy a

values of the efficiency and large values of the gain. This issmall volume compared to the harmonic of the Smith-Purcell

because the effective bunching of the beam and the decelereadiation, and because their amplitudes are smaller than that

tion of the electrons cannot be arranged within a single infor slow-wave harmonicgésee below As a result, we have

teraction space beam, and the deceleration of the electrons

cannot be a_rranged within a sirjglel interaction space. The NrESOASJ \Ifﬁ(x)\lfﬁ(y)co@ k(z-D)dV. (A2)

natural solution of the problem lies in the application of at v

least a two-stage amplifier in order to separate these pro-

cesses. However, even a single-resonator amplifier is of praélsing expressiort7) for the normalized coefficier,, we

tical interest, especially taking into account the simplicity of transform Eq.(A2) to a form

its design and fabrication, the ease of cooling, and the pos-

sibility to operate it in the millimeter- and submillimeter- aSSOf vPA(x)P2(y)cog k(z—D)dV

wave bands, and probably even above. For example, a 3-mm N, =

wave amplifier can provide a gain of 14 dB with an effi- 2

ciency of 7% with a 16-kV beam. The efficiency and the 4a3 fSA(x,z)\IfS(x)exq—lyﬂz)dx dy}

output power of the amplifier grow up with a decrease of the (A3)

radius of the field spot, which means an effective length of _ . )

the interaction space. Such a dependence on the length of tH&'€ integration in the numerator is performed over the whole

interaction space is typical of various types of Cerenkov-type/0lume of the resonator, and that in the denominator is per-

devices. In this respect, the orotron shows an obvious advariefmed over the cross section of the beam. The ratio of the

tage over classical devices like the klystron with distributed?@monic amplitudesa, /a, can approximately be deter-

interaction, where the interaction length coincides with theMin€d by using the model of an infinien x andy direc-

geometrical length. In the orotron, the length of the interacions grating. This model yield§26]

tion space—the radius of the field spot—is controlled by the . :

curvature of the upper mirror and by mirror separation, and, %z sink:h)sin(wna/l)

due to it the geometrical length of the grating and the dimen- a  mnyco(kh)+(d/1)? sir(kh)’

sions of the mirrors, can be essentially larger. This provides ) . ) .

a possibility to choose these dimensions according to otheétherel is the grating period, and andh are, respectively,

demands, for example, related with cooling or providing athe width and depth of the grating grooves.

desired value of th€ factor. The efficiency of both the orotron oscillator and amplifier
It should be noted that with decreasing the radius of thdises with an increase of the parame@r SinceG= 1N,

field spot, the beam density should be increased to provide g/ch an oscillatory system is optimum for the orotron in

high level of the amplifier performance. In this connection,Which N, reaches a minimum value. The physical reason for

an important result is that the space charge field effects praéhis stems from the fact that the norm inversely depends on

tically do not impose limitations on the maximum value of the intensity of the slow wave interacting with the begee

the beam current which may be used in the orotron amplifierEd. (A3)].

This opens an additional possibility to operate the orotron It follows from Egs.(A3) and(A4) that the optimal values

amplifiers at rather short wavelengths. of the groove depth are

h=M4+\n/2 (n=0,12...), (A5)

2.

(A4)
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the Technical University Hamburg—Harburg. Let us now specify the model for the electron beam. We

assume that the whole beam, having a homogeneous density
APPENDIX: NORM CALCULATION distribution, is concentrated in a cross secti®af rectangu-

. i _lar form, which is described as
We give an example of the norm calculation for an arbi-

trary quasi-TEM,,, mode of a semispherical open resonator 0<z<a, —bh/2<x<b/2
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with a andb the thickness and width of the beam, respec-atu=0.4 and 2, and consequently there are two values of the
tively. In this case, the functio (x,z) reads, in accordance beam width, which may be used in practide=0.8, and

with the normalization conditio8),

1/(ab) at x,zeS

Ax2)= [ 0 elsewhere, (A7)

Substituting Eqs(A6) and (A7) into Eq. (A3), we arrive,
after some transformations, at the expression

_sobryD 1 cotar(k,D) @
"8 |siAkD) kD ) XuXDd:
(A8)
Here
o = ul2 - -2
xx=uf *Pi(x)orif T (X)dX|
—x —u/2
Xy= f_;lf%@)dg,
~ ot o] ™ P
XeT 1 —exp(—op]2" 9 |sin(=d/l)] (A9)

where u=b/(2r,), X=x/(2r,), and o,=2mall(l<)\),
&=ylry. Note that the integrations in EJA9) are per-

b=4r,. Theb value ofb=0.8, is actually chosen in prac-
tical deviceq 2], so that it is used in our estimates.

From Eq.(A4), it follows that the norm depends on the
distance between the mirroBsin a resonant way. The mini-
mum is attained aD=qA/2+\/4, whereq=1,23... is
the number of half-waves kept between the mirrors. Provided
that the resonator and beam parameters are chosen to be
optimum, as indicated above, the norm of the quasi-}EM
mode becomes equal to

N, =0.4so\ (q+ 1/2)1,F x,0 4. (A11)

The coefficient®)4 and y, take the finite width of the grat-

ing grooves and of the beam thickness into account, respec-
tively. With the norm value given by EqA11), the param-
eterG reads

.. 0.8\/VQI’y|0
N rd(gq+1/2)x,04Uq°

(A12)

Note that usuallyr,=r,, and thus theG value does not
directly depend on the dimensions of the field spot for some
chosen value of the beam current value. In many cases, how-
ever, the beam densitl is a limiting factor, and we should
putl, into Eqg.(A12) as 7=abJ,. Now it can be seen from
Eqg. (A13) that there is an optimum value of beam thickness

formed in infinite limits rather than in finite ones. Such awhich is given by
substitution of the limits is possible because of the exponen-

tial decay of the resonator field to zero when approaching the

resonator boundary.

0,=12 or a=0.8/7=1.2vy/ w,. (A13)

For a resonator with a grating partially covering the bot-It iS €asy to check that the optimum value of the beam width

tom mirror in thex direction, the mode withm=0 ands

=2 is the principal one, and for this case the coefficignts

and y, become

X«=2uN2/mlerf(u) — (4u/mexp —u?)] % x,=\m/2,
(A10)

where erf()=(2/\/7) [ § exp(—t)dt.

Consideringy, as a function of the normalized beam
thicknessu, we find that this function possesses two minima

(b=0.8r,) found above is also optimum for this case. With
these values od andb, we may rewrite expressiai12) in
the following form:

le]\ 2 W 0.061,Qry\
G=|—| ————p. (A14)
m/ ¢ (q+1/204U}
The norm of oscillation for this case reads
N, =1.250A(q+1/2)1, 1O 4. (A15)
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