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Amplification regimes of the orotron: A single-resonator amplifier
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A self-consistent, nonlinear model of orotron amplifiers is proposed for investigating single-stage and
multistage amplifiers. The single-resonator amplifier is studied in detail including linear and nonlinear modes
of amplification. A comparative study of both collective and single-electron interaction regimes is performed.
The fundamentals which determine the level of amplifier performance are identified, and limiting output
characteristics of the amplifier are determined. The theoretical results are compared with experimental data
known to date.@S1063-651X~98!02605-1#
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I. INTRODUCTION

The orotron, which is now recognized as an effect
source of electromagnetic radiation through the millime
and submillimeter wavelength bands, was introduced
Rusin and Bogomolov in 1966@1#. Several versions o
orotron type devices, referred to as diffraction radiation g
erator@2#, ledatron@3#, Smith-Purcell free-electron laser@4#,
and planar orotron@5#, have also been developed and test
The advantages of the orotron result from both the use o
open resonator with a diffraction grating as an oscillato
system, and the exploitation of the Smith-Purcell radiat
@6#, which is a kind of Cerenkov radiation, for resonat
excitation. The beam-field interaction in the orotron co
bines peculiarities, which are inherent both in resonance g
erators, like the klystron, and nonresonance devices with
tributed interaction, like the traveling wave tube.

Orotron research activities have mainly concentrated
the development of autogenerators. The physics of their
eration is well understood, and adequately described du
efforts of a number of researchers~see, e.g., Refs.@1–14#!.
In practice, the most popular orotron design is that with
semispherical open resonator containing a grating on
plane mirror and a ribbonlike beam skimming over the gr
ing. Such tubes provide tens of watts at the output in
8-mm wavelength band, and several watts in a 3-mm b
with electron beams of a relatively low energy of 3 kV and
beam current of about 100 mA@14#.

It was also clear from the very first orotron experimen
and from theoretical studies@8,15,16#, that the amplification
mode of operation can be realized under some specific
ditions. The results of experimental investigations repor
up to now@17,18# have demonstrated the amplification effe
in the orotron. These amplifiers have been built on the b
of the above mentioned oscillatory system~see Fig. 1!, with
approximately the same values of the beam voltage and
rent. However, progress in amplifier research is mode
compared to that for generators, both in the developmen
practical amplifiers and in theoretical studies. So far the a
plifier output characteristics in general do not meet pract
needs. The theoretical results on record do not provide c
answers to questions like the following: It is possible to i
prove the output characteristics of these amplifiers? Wha
571063-651X/98/57~5!/5993~15!/$15.00
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the optimal design? What are the potentialities of orotro
type amplifiers? The aim of our study is to provide answ
to these questions through the analysis of small- and la
signal amplification modes of the orotron for both sing
electron and collective regimes of the electron-wave inter
tion. In this paper, we derive a unified self-consiste
mathematical model which is suitable to study both sing
resonator and multiresonator amplifiers, as illustrated in F
1 and 2. We then apply this model for studying the sing
resonator amplifier in sufficient detail.

Our analysis is based on the solution of a set of s
consistent equations including Maxwell’s equations, t
Poisson equation for the space charge field, and the equa
of particle motion. To simplify these equations, we use a
proaches which have generally been accepted in the th
of orotron oscillators. The most important of them are t
following: We assume that a single high-Q mode is excited
in the resonator, and that the motion of particles follows
straight line. We restrict ourselves to the case of a nonr
tivistic, monoenergetic electron beam.

When deriving the final equations, we intensively use
fact that there are three characteristic time scales which
sentially differ in magnitude, namely, the field period, th
transient time of electrons through the resonator, and
relaxation time of the resonator field. This allows us, as
the case of other resonance devices like lasers, magnet
and gyrotrons~see, e.g., Refs.@19–22#, first to use an aver-

FIG. 1. Schematic of a single-resonator orotron amplifier w
the coordinate system chosen.
5993 © 1998 The American Physical Society



he
ro
u
p
ib
s

a
an
at
re
d
o

s.
tio
. I
s
er
e
an

at
el
a
o

fo
be

ng
o-

e
e

ns

os
m
a

fie
in

the
y.

d,
xi-

o be

of
ian

e
ator

cell
er-
n-
yer
rror

r
u-

n-
on

he

cts,
this

5994 57D. M. VAVRIV AND K. SCHÜNEMANN
aging technique which eliminates the fast-time-scale p
nomena, and next to account for the effect of the elect
beam on the resonator field dynamics through the introd
tion of some integral characteristics. Depending upon a s
cific set of control parameters, the proposed model descr
self-running oscillations, synchronization of the orotron o
cillation, and various regimes of amplification.

The paper is organized as follows. The basic equations
given in Sec. II. The description of the field structure in
open resonator, the derivation of the equations of reson
excitation, the equation of motion, and the space charge
resentation, which are given in Secs. II A, II B, II C, an
II D, respectively, should be considered as a brief review
methods and approaches usually used in orotron studie
Sec. II D, the final system of equations is described. Sec
III deals with the analysis of the single-resonator amplifier
includes small- and large-signal analyses, a stability analy
a comparative study of collective and single-electron int
action regimes, and a comparison of theoretical and exp
mental results. Section IV contains discussion of results
conclusions.

II. BASIC EQUATIONS

To study the physics of orotron amplifiers and to calcul
their characteristics, we will derive a set of equations s
consistently, describing the interaction of an electron be
with the electromagnetic field inside any of the resonators
a multistage orotron amplifier. The mathematical model
the single-resonator amplifier depicted in Fig. 1 will then
obtained as a limit of this approach.

A. Resonator field

Provided that each of the resonators supports a si
high-Q mode, the field excited in any of the amplifier res
nators can be written in the following form@22#:

EW 5Re$EW r~rW !C~ t !e2 ivt2 ig~ t !2gradf%. ~1!

Here EW r(rW) is the spatial distribution of a resonator mod
andC(t) andg(t) are the amplitude and phase of the mod
respectively, which are in general slowly varying functio
of time compared to the function exp(2ivt). v is the fre-
quency of an external signal which is considered to be cl
to the natural frequencyv r of a resonator mode, and the ter
gradw describes the space charge field of an electron be
w is the field potential.

Because of the presence of a grating, the resonator
contains an infinite number of space harmonics, includ

FIG. 2. Schematic of a two-stage orotron amplifier.
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that propagating in a direction nearby perpendicular to
grating, and slow waves which are localized in its vicinit
Provided that the grating periodl and the wavelengthl
[2pc/v ~wherec is the velocity of light! meet the condi-
tion l !l, the y component of the resonator electric fiel
pointing in the direction of electron motion, may be appro
mated by the following expression@2#:

Ery5A0Cs~x!Cm~y!H sin@kr~z2D !#

1 (
n52`
nÞ0

`

~an /a0!exp~2ugnuz1 ikny!J . ~2!

Herey is the beam axis;z is normal to the grating surface;x
points along the grating ruling direction;A0 is a normalized
coefficient to be specified below;kr5v r /c; D is the dis-
tance between the resonator mirrors, which is assumed t
considerably smaller than curvatures of the mirrors;an /a0 is
the ratio of space harmonic amplitudes;kn is the propagation
constant along the grating of thenth harmonic, andgn

5Akr
22kn

2 is the constant of propagation along thez axis.
Cs(x) and Cs(y) are functions describing the structure
the field, which corresponds to the structure of Gauss
beams:

Cs~x!5exp~2x2/r x
2!Hs~&x/r x!,

Cm~y!5exp„2~y2L/2!2/r y
2
…Hm„&~y2L/2!/r y…, ~3!

whereHs( ) andHm( ) are Hermite polynomials,r x and r y
are the radii of the field spot on the grating in thex and y
directions, andy50, and y5L/2 correspond to the plan
where the beam enters the resonator and to the reson
center, respectively. The sin term in Eq.~2! describes a
standing wave formed due to reflections of the Smith-Pur
harmonic at the resonator mirrors. The summation is p
formed over all slow-wave harmonics, which are conce
trated in a thin layer near the grating. The characteristic la
thickness is considered to be small compared to the mi
separation. The resonator mode described by Eq.~3! is usu-
ally denoted as quasi-TEMsmq mode, where quasi stands fo
the perturbation introduced to the conventional field distrib
tion in an open resonator by the grating, ands, m, andq are
mode indexes.

Usually only a single slow wave, which is in space sy
chronism with the electrons, may exert a direct influence
electron motion. We define the wave withn51 to be the
synchronous one. Denoting this wave asEy1 , we can write
its space distribution as follows:

Ey1~x,y,z!5A0~a1 /a0!Cs~x!

3exp~2ug1uz!Cm~y!exp~ ik1y!, ~4!

wherek1'2p/ l . It should be emphasized that details of t
function f y(y)[Cs(y)exp(ik1y) are of principal importance
for orotron operation. To describe the corresponding effe
it is also convenient to use the Fourier presentation for
function:
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f y~y!5~2p!21/2E
2`

`

f k~k!eikydk,

wheref k(k) is the amplitude of the harmonic wave exp(iky),
with k being the wave number. Introducing the intens
function Sm(k)[u f k(k)u2, one can find

Sm~k!5~r y
2/2!Hm

2
„r y~k2k1!/&…exp„2r y

2~k2k1!2/2….
~5!

Thus the electrons experience a set of harmonics exp(iky)
with continuous spatial spectrum. To set up equations g
erning the time evolution of the resonator field, we will se
consistently transform Maxwell’s equations, the equation
particle motion, and the Poisson equation by taking into
count the assumptions formulated above.

B. Equations of resonator excitation

To find equations for amplitudeC(t) and phaseg(t), we
first apply Maxwell’s equations to the single-mode fie
given by Eq.~1!, and next we eliminate fast varying terms b
using the standard method of averaging@23#. Since this tech-
nique has been described in detail with respect to a num
of resonance devices~see, e.g., Refs.@7, 9, 19–22#!, we give
only the final result, which in our case reads

dC

dt
52

v r

2Qr
C2ReH exp~ ig!

2Nr
E

s
JW1•EW r* dsJ

1bscos~g2ws!,

C
dg

dt
5~v r2v!C1ImH exp~ ig!

2Nr
E

s
JW1•EW r* dsJ

2bssin~g2ws!. ~6!

Here Qr is the loadedQ factor of the excited mode,Nr

5«0*VEW r•EW r* dV is the mode norm with«0 the permittivity
of free space,I 0 is the dc beam current,bs is the amplitude
of a possible external signal directly fed into the resona
andt0 is the moment at which an electron enters the reso
tor. Hencet[t(t0 ,y) is considered as a function of both th
entrance timet0 and the distancey. When deriving these
equations, the normalized coefficientA0 in Eq. ~2! was cho-
sen as follows:

A05F2~a1 /a0!E
S
Cs~x!L~x,z!exp~2ug1uz!dx dzG21

,

~7!

where L(x,z) determines the electron density distributio
over the beam cross sectionS, obeying the following condi-
tion of normalization:

E
S
L~x,z!dx dz51. ~8!

It should be pointed out that, specifyingA0 , we remove
an uncertainty in the definition of the normNr which in-
cludesA0 . In this case,Nr becomes dependent on the ele
tron beam dimensions and the beam location inside the r
v-

f
-

er

r,
a-

-
o-

nator as well as on the three-dimensional structure of
resonator field. To illustrate these dependencies, the nor
calculated in the Appendix.

As a final step in this section, we transform Eqs.~6! to a
dimensionless form:

dF

dt
52F1

G

4p E
0

L̃

Cm~j!E
0

2p

cos@vt~w0 ,j!

2k1r yj1g#dw0dj1As cosg,

dg

dt
52d1

G

4pF E
0

L̃

Cm~j!E
0

2p

sin@vt~w0 ,j!

2k1r yj1g#dw0dj2
As

F
sin g. ~9!

Here t5tv/(2Q); j5y/r y ; w05vt0 ; L̃5L/r y ; F5C/E0
is the normalized field strength withE05U0 /r y ; and U0

5mn0
2/2ueu is the value of the beam accelerating voltag

with n0 the initial velocity of the beam particles, ande and
m the electron charge and mass, respectively.G
52Qry

2I 0 /(v rNrU0) is the gain parameter or parameter
nonlinearity,d52Q(v r2v)/v r is the normalized frequency
detuning, andAs52Qbs /(v rE0) is the normalized ampli-
tude of the external force. It should be noted that the g
parameterG, introduced in Ref.@9#, plays a principal role in
the theory of the orotron. An example of its calculation a
optimization is given in the Appendix. In order to find a
equation for the functiont[t(w0 ,j), which describes trajec
tories of the electrons we proceed to the equation of mot

C. Motion equation

Under the assumption of a one-dimensional motion of
beam particles, their trajectory can be influenced by both
action of they component of the electric field given in Eq
~4! and the space charge field of the beam. To take the
fects of finite transverse dimensions of the beam into
count, these fields are averaged over the beam cross se
Considering the normalization condition~7!, we arrive at the
following equation of motion:

d2y

dt2
5

e

m F1

2
f mC cos~vt1g2k1y!1ĒqyG , ~10!

where Ēqy5*SL(x,y)Eqy(x,y,z)dxdy is the averagedy
component of the space charge field.

Now let us rewrite the motion equation in Lagrange va
ablesy andw0 , with respect to

Q~w0 ,y!5vt~w0 ,y!2w02vy/n0 , ~11!

which determines the variation of the electron phase un
the action of both the resonator field and space charge wa
It is governed by
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d2Q

dj2 5
F0

2 S 11
1

F0

dQ

dj D 3

3H F

2
Cm~j!cos~Fsj1Q1w01g!1FqJ .

~12!

Here F05vr y /n0 , Fs5vr y(1/n021/nph) is the velocity
mismatch parameter withnph5v/k1 , andFq5Ēqy /E0 is the
dimensionless strength of the beam space charge field.

The motion equation must be completed with initial co
ditions. If a nonmodulated beam enters a resonator, then

Q~w0 ,j!5dQ/dj50 at j50 for w0P@0,2p#.
~13!

Such initial conditions are used for analyzing sing
resonator amplifiers or the input stage of a multiresona
amplifier. For any next stage, the initial values ofQ and
dQ/dj are in general not equal to zero. In order to spec
their values, it is previously necessary to solve the mot
equation for electrons crossing the drift space, which se
rates the resonators.

D. Space charge field

Generally the space charge field is not a quasiharmo
but a quasiperiodic function of time. Hence it should be re
resented by a complete set of Fourier components,

Eqy5Re (
n51

`

Eqn exp~2 invt !,

whereEqy is the complex amplitude of thenth harmonic of
the y component of the space charge field. The harmo
amplitudeEqn is expressed in terms of the potential byEqy
52]Fen /]y, where the potentialFen of the nth harmonic
obeys Poisson’s equation

¹2Fen52rn /«0 ,

with the corresponding boundary conditions.
A general approach to the solution of this equation,

plied to the study of traveling-wave tubes, was proposed
Ref. @24#. Later on, this approach was adopted in Refs.@7,
25# to the analysis of the space charge effects in the orot
Following Ref. @25#, we can write the final expression fo
Ēqy , which reads

Ēqy5ReH I 0

ivS̄«0
(
n51

`
1

n
F i n~y!Gn01 (

m51

`

~21!m

3
Gnm

nmbe
m

dmi n

dymG3exp@2 in~w01Q!#J . ~14!

HereS̄51/*SL2(x,z)dx dz is the effective area of the beam
cross section, andi n5p21*0

2p exp@in(w01u)#dw0 is thenth
harmonic of the beam current normalized atI 0 . The coeffi-
cientsGnm are defined by
-

-
r

y
n
a-

ic
-

ic

-
in

n.

Gnm5d0
m2@~ iben!m/m! #E

2`

`

mm exp~ inbem!G2~m!dm,

~15!

where G2(y,y8)52«0s̄*S8*S(x,z)L(x8,z8)@(]2G/]x2)
1(]2G/]z2)#dx dz dx8dz8 is the averaged Green’s func
tion G(x,y,z,x8,y8,z8) of the Poisson equation, andd0

m is
Kronecker’s symbol. Note that a useful relation holds for t
coefficientsGnm :

Gnm5
be

m

m!

dmGn0

dbe
m . ~16!

The coefficientsGnm , with m50, stand for the conven
tional space charge reduction factors. The coefficientsGnm
with mÞ0 determine a nonlocal action of the space cha
field. However, because of the just quasilocal action of
Coulomb force, as a first-order approximation, the nonlo
phenomena can be neglected. The calculation of the co
cients given by Eq.~15! usually creates no difficulties if both
Green’s function and the distribution of the electron dens
over the beam cross section are known. In the case of e
trons skimming over a diffraction grating, the well-know
Green’s function of the infinite metallic plane serves as
good approximation to this problem. A homogeneous dis
bution of the electrons over the beam cross section can
also assumed without serious influence on the accurac
the Gnm-calculation. On this basis, an analytical express
was derived forGnm , and for a ribbonlike beam, the resu
reads

Gn05123/~2an!1~2/an!exp~2an!2exp~22an!/~2an!,
~17!

wheresn5nbea. a is the beam thickness, which is assum
to be small compared with the beam widthb. This expres-
sion, along with Eq.~16!, allows us to determine the coeffi
cientsGnm .

E. Mathematical model

The set of equations~9!, ~12!, and ~14! describes self-
consistently the time evolution of the resonator field as w
as its stationary states. The analysis of these equations
significantly be simplified for the case when the relaxati
time t rel of the resonator field is much larger than the tra
sient time t l of the particles through the interaction spac
Since t rel'Q/v r and t l'2r y /n0 , this is equivalent to the
inequality

Q@2r yv r /n0 . ~18!

This condition usually holds for orotron generators and a
plifiers studied so far experimentally. Therefore, furth
analysis will be based on this assumption.

If condition ~18! is met, the time variation of amplitudeF
and phaseg can be neglected during time intervals of th
order of t l . Separating the processes with different tim
scales in such a manner, we rewrite Eqs.~9! for the ampli-
tudeF and phaseg as follows:
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dF

dt
5@211GS1~F,g!#F1As cosg,

dg

dt
5@d2GS2~F,g!#1

As

F
sin g, ~19!

where functions

HS1~F,g!

S2~F,g!J 5
1

4pF E
0

L̃

Cm~j!E
0

2p H cos
sinJ

3~Fsj1u1w01g!dw0dj, ~20!

called the oscillatory characteristics, are introduced. Th
functions in integral form describe the influence of a be
on the resonator field dynamics. To determineS1(F,g) and
S2(F,g), the motion equation~12! must be solved for the
values ofF and g, and forw0P@0,2p#. Let us rewrite the
equation of motion by taking into account expression~14!
for the space charge field, but without the terms describ
the nonlocal action of this field:

]2u

]j2 5S 11
1

F0

]u

]j D 3H FF0

4
Cm~j!cos~Fsj1u1w01g!

2
pb

2

p (
n51

`
Gn0

n E
0

2p

sin n@w̃02w01u~w̃0 ,j!

2u~w0 ,j!#dw̃0J . ~21!

Here pb5vpr y /n0 , where vp5@ ueuJ0 /(m«0n0)#1/2 is the
plasma frequency. For the sake of further convenience, le
list all other control parameters of the model:G
52Qry

2I 0 /(v rNrU0) is the gain ~nonlinearity! parameter
~see the Appendix!; F05vr y /n0 is the transient angle or th
dimensionless radius of the field spot on the grating;Fs
5vr y(1/n021/nph) is the velocity mismatch paramete
Gn0 , (n51,2,3, . . . ) are thespace charge reduction factor
Cm(j) is the mode amplitude distribution in the direction
particle motion;d52Q(v r2v)/v r is the normalized fre-
quency detuning between the natural frequency of an exc
mode and the frequency of an external signal; andAs is the
normalized amplitude of an external signal. It is obvious, t
these parameters must be specified for each resonator i
case of a multiresonator amplifier.

The self-consistent set of equations~19!–~21!, depending
upon specific values of the control parameters, descr
various modes of device operation, including amplificati
regimes, self-running oscillations, synchronization of osci
tions, etc. It is worth noting that this model is also applica
to other types of resonance devices like the resona
backward-wave oscillator and the klystron with distribut
interaction. Because of this, the natural question aris
Where do the peculiarities of the orotron manifest the
selves? From the physical point of view, the main dist
guishing feature of the orotron is the availability of a ha
monic of the Smith-Purcell radiation, which produces t
internal feedback and provides the energy output. This h
monic exerts almost no direct action on particle motion, a
e

g

us
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t
the

es
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-

r-
d

it is hence omitted in the motion equation. It neverthele
appears in the integral characteristic—the normNr , and
therefore in the gain parameterG. The norm is proportional
to the energy stored in the resonator, and its value is ma
defined by the harmonic of Smith-Purcell radiation. In th
way, it produces an essential influence on the electron-w
interaction. This fact gives a general enough criterion
optimization of the orotron oscillatory systems by means o
minimization of the norm value~see the Appendix!.

In addition, the Smith-Purcell harmonic, exciting an op
resonator, forms the structure of the resonator field w
some specific distribution. The slow wave, which intera
with the electron beam, becomes modulated according to
distribution, and it appears that the details of this distribut
are also very important for the electron-wave interaction.

Solving Eqs.~19!–~21!, one can directly find the time
behavior of amplitudeF(t), phaseg~t!, and frequency
vm(t)5v1(v r /2Q)dg/dt of an excited oscillation and/o
the corresponding stationary values:Fst, gst, and vmst.
Along with this, it is usually desired to calculate power cha
acteristics like efficiency, power, and gain. The general
pression for the powerPr stored by some resonator mode,
@22# Pr5v rNrCst

2/(2Q), where Cst means dimensiona
steady-state amplitude of the field~1!. In terms of the dimen-
sionless amplitudeF and the parameterG, this expression
can be written as

Pr5P0Fst
2/G, ~22!

whereP05I 0U0 is the beam power. From this, we have
expression for the electron efficiency:

h5Fst
2/G. ~23!

The dimensionless amplitude of the input signalAs is deter-
mined by the power of the input signalPin , to be amplified
in the following way:

As
25~GPin /P0!~12uGu2!, ~24!

where G is the reflection coefficient at the resonator inp
terminal. This expression allows us to find the amplifier ga
if the output power is known.

The set of equations~19!–~21! will be used in the next
sections to study single-resonator orotron amplifiers.
should be noted that, in this case, a significant simplificat
of these equations can be achieved by virtue of the follow
fact. Since there is no preliminary beam modulation,
functionQ(w0 ,j) depends on the sumw[w01g only rather
than onw0 andg separately. In this case, we have, instead
Eqs.~19!,

dF

dt
5@211GS1~F !#F1As cosg,

~25!

dg

dt
5@d2GS2~F !#1

As

F
sin g,

where the oscillatory characteristics depend on the field
plitude only:
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HS1~F !

S2~F !J 5
1

4pF E
0

L̃

Cm~j!E
0

2p H cos
sinJ

3@Fsj1u~w,j!1w1g#dw0dj. ~26!

Thus the right side of these equation depends ong in an
explicit form, which obviously simplifies the problem o
studying single-resonator amplifiers.

Another limiting case should be noted which correspon
to the self-running orotron. SettingAs50, we find that the
field dynamics is described by a single amplitude equatio

dF

dt
5@211GS1~F !#F, ~27!

whereas the second equation is transformed into a direct
mula for the instantaneous frequency of oscillationvm(t)
[v1(v r /2Q)(dg/dt)5v r@12(G/2Q)S2(F)#. Equations
~26! and~27!, or similar relations, have been intensively us
to study single-mode operation of orotron oscillators@9–
11,25#.

III. A SINGLE-RESONATOR AMPLIFIER

To realize orotron amplification in the simplest way, o
may use the conventional single-resonator orotron de
just by transforming it into a reflection-type amplifier, as h
schematically been shown in Fig. 1. Up to this day such
amplifier have mainly been studied experimentally@17,18#.
Here we will analyze both the small- and large-signal ope
tion modes of this amplifier for collective and single-electr
interaction regimes.

A. Linear analysis

The single-resonator orotron amplifier shown in Fig. 1
described by the system of equations~21!, ~25!, and ~26!
with the initial conditions~13! for the equation of motion.
This system is amenable to analytical treatment for the c
of a linear mode of amplification. To find this solution, w
start from the motion equation~21!. To first order in ampli-
tudeF, its solution reads

u~w,j!5~F0F/4p!E
0

j

Cm~j8!sin@p~j2j8!#

3cos~w1Fsj8!dj8,

which, after substitution into Eqs.~25! and ~26! and some
algebraic manipulations, yields the following equations
the resonator amplitude and phase:

dF

dt
5a0F1As cosg,

~28!

dg

dt
5d01

As

F
sin g,

Herea05GF0R1(Fs ,p)21 is a dimensionless rate of am-
plitude damping (a0,0) or growing (a0.0), and d0
52Q(v02v)/v r is the frequency detuning, withv0
s

r-

n
s
n

-

se

r

5vr@11GF0R2(Fs,p)# the resonance frequency of the ‘‘hot
resonator. The functionsR1 andR2 in the general case rea

HR1

R2
J 5

1

32p E
0

L̃

Cm~j!E
0

j

Cm~j8!F H cos
sinJ ~Fs1p!~j2j8!

2 H cos
sinJ ~Fs2p!~j2j8!Gdj8dj, ~29!

where p5AG10vpr y /n0 is the space charge paramete
These functions go back to the linear theory of the orot
oscillator@2,7,26#. The functionR1(Fs ,p) is proportional to
the power delivered~or absorbed! by the beam. It is pertinen
to make some comments concerning general propertie
this function. In terms of the spatial spectral intensitySm(k)
@see Eq.~5!#, expression~29! for R1(Fs ,p) can be written in
an alternate form~see also Refs.@27, 28#!:

R15~p/32pry
2!~S1

22S1
1!. ~30!

HereSm
75Sm(k)uk5k

p
7 are values of the intensity calculate

for k equal to the propagation constantkp
75(v6vp8)/n0 of

the slow and fast space charge waves, respectively, w
vp85AG10vp is the reduced plasma frequency. It is evide
from Eq. ~30! that the slow wave always gives up its ener
to the resonator field, whereas the fast wave always abs
the resonator energy.

Two limits of expression~30! are worth discussing in
more detail. The first one is the single-particle interacti
regime, which is defined by 2vp8/n0!Dk ~Dk is an charac-
teristic width of the spatial spectrum of a synchrono
wave!, so that, from Eq.~30!, we obtain

R15
p

16r y
3

dSm~k!

dk U
k5be

. ~31!

Here the derivative is evaluated fork, equal to the wave
numberbe[v/n0 of a wave on the beam. Amplification o
oscillations may occur only ifdSm(k)/dkuk5be

.0, which

physically means that in the vicinity ofk5be , the spatial
harmonics with a phase velocity (v/k) less thann0 have
larger amplitudes compared to those withv/k.n0 . For m
50, the optimal value ofFs , maximizing the function
R1(Fs,0) and the amplifier gain as well, reads

Fs opt521. ~32!

Note that the inequalitydSm(k)/dkuk5be
.0 may be con-

sidered as a generalized Cerenkov radiation condition, o
may be treated as the inverse Landau damping@29#. This
condition enables one to determine, just from the form of
function Sm(k), a range of varyingbe , where amplification
may occur. It follows, e.g., from Eq.~5! that, for m50, be
values must fall within the intervalk12Dk/2,be,k1 @Dk
'1/r y is the characteristic width of the spatial spectru
Sm(k)# in order that amplification occurs. Form.0 the op-
eration zone with respect tobe ~accelerating voltage! is split
into m11 subzones, since in this case the functionSm(k)
hasm11 maxima.
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The second limiting case corresponds to the collecti
electron~Raman! interaction regime with 2vp8/n0@Dk when

R15@p/~32pry
2!#S1

2 , ~33!

provided that the value of (v1vp8)/n0 is close to that ofk1 .
The optimal value ofFs , for this interaction regime, reads

Fs opt52p. ~34!

The range of thebe variation form50 @see Eq.~5!# is de-
termined here by the condition

k12Dk/2,be1vp8/n0,k11Dk/2.

This range can be approximately two times larger than in
previous case.

Now we return to Eqs.~28!. They can be solved analyti
cally for the general case; however, we write only an expr
sion for the amplitude of the steady-state oscillations, wh
is

Fst5As /~a0
21d0

2!1/2. ~35!

The stable amplification regime can be realized only ifa0
[GF0R1(Fs ,p)21,0; otherwise a self-excitation of th
oscillations occurs in the device. The threshold~starting!
value of the parameterG for self-excitation of the oscilla-
tions is given by

Gth5
1

F0R1~Fs ,p!
[

32pry
2

pF0~S1
22S1

1!
. ~36!

Let us now consider the amplification properties of t
single-resonator orotron amplifier. Since this device is
reflection-type amplifier, we can use the following gene
expressions for the maximum midband gain@30#:

K5Qh
2~2Qext

212Qh
21!2, ~37!

and, for the half-power bandwidth,

Dv5v0 /Qh . ~38!

HereQext is the externalQ of the resonator, andQh is theQ
factor of the ‘‘hot’’ resonator, which includes all losses a
their compensation due to an active medium in the resona
It is easy to show, using Eqs.~28!, that in our caseQh is
given by the following expression:

Qh5Qr /@12GF0R1~Fs ,p!#. ~39!

For the resonator without beam we haveQh5Qr , where
Qr

215Qext
211Q0

21 is the loadedQ factor, withQ0 being the
unloaded resonatorQ. Now, taking into account Eq.~36!, we
can rewrite Eqs.~37! and~38! in terms of the orotron ampli-
fier control parameters

K5~G1J!2/~12J!2, ~40!

Dv5v0~12J!/Qr , ~41!
-

e

s-
h

a
l

r.

whereJ5G/Gth , andG5122Qr /Q0 is the reflection coef-
ficient at the resonator input terminal. This form of prese
tation conveniently illustrates a typical feature for a
reflection-type amplifier: an increasing gain and simul
neously decreasing bandwidth while approaching the thre
old for self-excitation of oscillations. It should be noted th
in the single-particle interaction regime (p50), the function
R1(Fs ,p) does not depend upon the beam current value
this case and for a particular orotron amplifier,J5I 0 /I 0 th
(I 0 th is the threshold value of the beam current! if the beam
currentI 0 is considered as a variable parameter. This allo
us easily to compare the analytical dependencies ofK(J) and
Dv(J) with corresponding experimental results. An examp
of such a comparison is given in Fig. 3, where the relatio
ship between the amplifier gain andJ, as given by Eq.~40!,
is displayed along with results of experimental investigatio
of 8-mm wave band amplifier withU052.5 kV, I 0 th532.5
mA, andG50.35, which were described in Ref.@17#. Prac-
tically the same experimental data were obtained in rec
experiments@18#, with another design of the single-resonat
orotron amplifier. Thus we can conclude that expression~40!
fits the experimental data fairly well. In the latter case, t
amplifier offers relatively high gain; the increase in the ga
is, however, accompanied by a decreasing amplifier ba
width according to Eq.~41!. In this parameter region, non
linearities of the electron-wave interaction may, howev
have a pronounced effect on amplifier operation, so that t
should be taken into account.

B. Effect of nonlinearities on small-signal amplifier operation

To study effects of nonlinearities on the small-signal a
plifier operation, we take into account the first nonline
terms in theF-power expansion of functionsS1(F) and
S2(F) @see Eq.~26!#. This gives the following equations fo
the amplitude and phase:

dF

dt
5@a02a1F2#F1As cosg,

~42!

dg

dt
5@d02d1F2#1

As

F
sin g.

FIG. 3. Power gain vs normalized beam current for single re
nator amplifier. Solid line—theoretical results; circles—
experimental data@17,18#.
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Herea15F0
3GR3(Fs ,p) andd15F0

3GR4(Fs ,p), where

R3,4~Fs ,p!5~1/4!E
0

L̃

Cm~j!~X1
21X2

2!@X2,1 cos~Fsj!

7X1,2 sin~Fsj!]dj,

S X1~Fs ,p!

X2~Fs ,p! D5
1

8p E
0

j

Cm~j8!sin@p~j2j8!#

3S cos~Fsj8!

sin~Fsj8! Ddj8.

The Fs dependence of functionsR3 andR4 , along withR1
andR2 , is shown in Fig. 4 for the single-electron interactio
regime (p50) and a resonator mode withm50. It should be
noted that the functionR3 is positive atFs,0, i.e., in the
amplification region whereR1.0. Hence the nonlinear term
in Eq. ~42! with R3 describes the effect of a dissipative no
linearity, whereas the second nonlinear term~with R4! de-
scribes the effect of a reactive nonlinearity.

SettingdF/dt5dg/dt50 in Eq. ~42!, we find an equa-
tion for the amplitudeFst:

@~a02a1Fst
2 !21~d02d1Fst

2 !2#Fst
25As

2. ~43!

FIG. 4. FunctionsRi(Fs,0), i 51, 2, 3, and 4.

FIG. 5. AmplitudeFst of steady-state oscillations vs frequen
detuningd for different values of the normalized input power:~1!
Pin /P05232 dB, ~2! Pin /P05228 dB, and ~3! Pin /P05
212 dB for J50.6, andFs520.65p, F0525, p50, andG50.
This is a cubic equation with respect toFst
2. Hence the am-

plifier can have one or three stationary states. The latter c
is realized for some region of thed0 variation only if the
following conditions are simultaneously met:

As.Acr[F 8ua0u3~d1
21a1

2!

3)~ ud1u2)a1!3G 1/2

, ~44!

ud1u.)a1 . ~45!

Thus, for multistationary states to arise the signal amplitu
As should be in excess of the valueAcr given by Eq.~44!. In
addition, the parameter of the reactive nonlinearity should
larger than some limit, which is determined by the dissip
tive nonlinearity given in Eq.~45!. When conditions~44! and
~45! are met, thed dependence of the steady-state amplitu
Fst ~resonance curve of the amplifier! is characterized by the
existence of a hysteretic loop, which is illustrated by curve
in Fig. 5. The resonance curves in this figure have b
found from the solution of the initial system~25!, and there
behavior is sufficiently well described by the approxima
model of Eq.~42! provided thatAs is not too large. At large
values ofAs , higher nonlinear terms, which are not include
in Eqs.~42!, manifest themselves. This leads, for example
the effect of suppressing the bistability, which is illustrat
by curve 3 in Fig. 5. This effect is not described by Eqs.~42!.

It is easy to show, by using the standard stability analy
of equilibria, that in the hysteretic region the states with t
largest and smallest values of the amplitude are alw
stable, whereas the third state is always unstable. Henc
this case, the amplifier is altered to a bistable device, and
one-to-one correspondence between the amplifier input
output is violated. This can be considered as a specific fo
of amplifier instability~see Sec. III C!.

Let us now consider the case when the amplitudeAs is
below the critical level, so that the one-to-one corresp
dence is preserved. Here Eq.~43! can be solved by using a
successive approximation procedure and by considering
termsa1Fst

2 andd1Fst
2 as a perturbation. Choosing the valu

of Fst from Eq. ~35! as first approximation, the second a
proximation reads

FIG. 6. Power gain vsPin according to Eq.~47! ~solid lines! and
experimental data~crosses! for different values ofJ at Fs521,
G50.35,U052.5 kV, I 0 th532.5 mA, andF05100.
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Fst
25As

2F S a02
a1As

2

a0
21d0

2D 2

1S d02
d1As

2

a0
21d0

2D 2G21

. ~46!

As one can expect, the amplitude of the forced oscillatio
has always a finite value because of the nonlinearities~recall
that a0,0 and a1.0!, and the central frequency of th
amplifier becomes dependent on the amplitude of the in
signal. To find an expression for the amplifier gain, we ag
make use of Eq.~37!. The Q factor of the ‘‘hot’’ resonator
Qh can in this case be found from Eq.~42!. The result reads
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Qh5
Qr

2a01a1F2

[
Qr

12GF0R1~Fs ,p!1GF0
3R3~Fs ,p!F2 .

After the substitution of this expression into Eq.~37!, and
some transformations, we arrive at the following formula f
the gain:
K5
~G1J!2

$12J1J2~12J!22F0~12uGu2!~Pin /P0!@R3~Fs ,p!/R1
2~Fs ,p!#%2 . ~47!
of

pa-
e

the
-
ur,
the
The relationship between the input power (Pin), the beam
power (P0), and the amplitudeAs is given by Eq.~24!. The
dependence ofK on Pin , as given by Eq.~47!, is shown in
Fig. 6 for the single-electron-interaction regime atFs5
21, G50.35, andF05100. ThisFs value is optimum for
the linear case, and the chosenF0 andG values are approxi-
mately the same as in the above mentioned experiments@17#.
The corresponding experimental results given in Fig. 6 ar
good agreement with the theoretical curves. As can be s
from this figure, the effect of the input power is increas
when theJ value approaches unity, i.e., when the beam c
rent approaches the threshold valueI 0 th. The increase in the
input power leads to a gain lowering effect, as can be s
from Eq. ~47! if we take into account thatR3(Fs ,p).0 in
the amplification regime. The dynamic range of the amplifi
is dramatically reduced when the amplifier is operated n
threshold of self-excitation (J51). The increase of the tran
sient angleF0 also contributes to decreasing the dynami
range.

C. Stability analysis

From the point of view of the theory of dynamical sy
tems, instabilities in an amplifier are due to bifurcations o
curring in the system. In the framework of the mathemati
model ~25!, three types of bifurcations may be responsib
for instabilities, namely supercritical and subcritical Hopf b
furcations, and the saddle-node bifurcation. Rigorous m
ematical definitions of these bifurcations can be found, e
in Ref. @31#. We will deal here with their impact on th
dynamics and stability of the amplifier.

Let us start from the supercritical Hopf bifurcation, whic
leads to a soft self-excitation of oscillations. The termsoft
stands for the fact that the state withF50 becomes unstable
and an arbitrary small perturbation initiates the orotron
cillation generation. According to the stability analysis
system~28! or ~42!, this occurs when thea0 value becomes
positive. This gives the following stability condition:

G,Gth[@F0R1~Fs ,p!#21. ~48!

It is convenient to analyze this condition on the parame
plane (F0G,Fs), which is shown in Fig. 7 for the single
in
en

r-

n

r
ar

l

-
l

h-
.,

-

r

particle interaction regime p50. The curve F0Gth

5@R1(Fs,0)#21, separating stable and unstable regions
operation, is plotted here for the casem50. Note that, for a
practical amplifier, the variation of the parameterFs may be
related to an accelerating voltage variation, whereas the
rameterG is proportional to the beam current value. Th
amplification (K.1) may occur only ifFs,0. Expression
~40! for the amplifier gain is valid for anyFs-value in this
range, but to obtain a highK value with a minimum beam
current, the parameterFs must be chosen asFs5Fs opt,
where Fs opt is given by Eq.~32!, and the corresponding
minimum value of the parameterGth is

Gth min517/F0 . ~49!

FIG. 7. Regions of stable and unstable amplifier operation in
parameter plane (F0G,Fs). In the doubly and singly shaded re
gions, soft and hard types of self-excitation of oscillations occ
respectively. Vertically dashed lines denote the boundary of
saddle-node bifurcation onset. RegionFsL,Fs,FsR is the safe
region with respect to this bifurcation.
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By using Eq.~A15! for the norm of a quasi-TEM20q mode,
we find the following expression for the minimum thresho
value of the beam current:

I 0th min>0.3S ueu
m D 1/2 ~q11/2!r xQd

v r r y
2WQr

U0
3/2. ~50!

Here W is the wave resistance of the free space, and
coefficient Qd.1 takes the finite width of the gratin
grooves into account@see Eq.~A9!#. When deriving this ex-
pression, beam thicknessa and beam widthb have been
chosen to be optimum~see the Appendix!, and read

b50.8r x , a51.2n0 /v r . ~51!

In the following, these values are used for the analysis
the amplifier parameter estimates. Recall that the phys
meaning of these values is as follows: They maximize
gain parameterG for a given value of the beam density.

In the collective-electron interaction regime, the para
eter plane (F0G,Fs) has in general the same structure as
the previous case. The threshold curveF0Gth
5@R1(Fs ,p)#21 for p@1 reads

F0Gth5~64p/p!exp@~Fs2p!2/2#.

Thus a minimal value ofGth , equal to

Gth min564p/~pF0!, ~52!

is obtained atFs opt52p, which is equivalent tok25k.
Making use of Eq.~A15! and of the definitions of the param
etersp, F0 , andG, we rewrite Eq.~52! with respect to the
minimum value of the threshold current for the case o
quasi-TEM20q mode

I 0th min>33103
«0c2G10~q11/2!2U0r xQd

2

v r r y
2Qr

2 . ~53!

As was mentioned before, in the region above the thre
old curve in Fig. 7 ~double-shaded region!, a soft self-
excitation of oscillations occurs in the orotron. However, t
hard type of the orotron self-excitation may also be realiz
and the subcritical Hopf bifurcation is responsible for th
process. Unlike the previous case, the occurrence condit
cannot be found here analytically from a small-signal ana
sis. It can only be noted that, form50, this type of excitation
may be realized only ifFs,Fs min . Direct numerical studies
are necessary to determine the location of regions in the
rameter space where the hard excitation of oscillations ta
place. The corresponding region is shown on the param
plane in Fig. 7. In this region, the trivial state (F50) of the
autonomous system (As50) is stable; a stable periodic orbi
however, also exists in the phase space of system~25!. An
external signal of finite value can trigger the system from
trivial state on the periodic orbit to cause the excitation
orotron oscillations. As can be seen from Fig. 7, the h
excitation of oscillations occurs at lower values of the p
rameterG as compared to the soft excitation. This leads t
decrease of theG values which may be used for the amp
fication regime.
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Additional limitations for the choice of the parameterG
as well as of other parameters result from the saddle-n
bifurcation onset. This bifurcation manifests itself in the fo
lowing way. If the amplitude of an external signal (As)
passes through some critical value (Acr), a stable state is
split into three states: two stable states and an unst
~saddle! state. In terms of the amplifier resonance curve, t
is exhibited by a hysteretic loop shown on Fig. 5. It shou
be stressed that each of these stable states correspon
forced oscillations with the frequency of the external sign
and, opposite to the Hopf bifurcations, a self-excitation
oscillations does not occur. However, the simultaneous e
tence of two stable states with different values of the out
amplitude is undesirable for most amplifier application
Also, as follows from general results concerning the stabi
of quasiperiodically forced systems@32#, in this case chaotic
oscillations may easily arise when a real multiperiodic sig
is applied at the amplifier input.

Approximate conditions for the occurrence of the sadd
node bifurcation are given by Eqs.~44! and ~45!. Note that
Eq. ~45! is equivalent to the following one:

uC4~Fs ,p!u.)C3~Fs ,p!. ~54!

Referring to Fig. 3, we find that for the single-electron inte
action regime this condition is satisfied ifFs is outside the
interval

20.55p[FsL,Fs,FsR[20.1p. ~55!

The corresponding boundaries of the regions where
saddle-node bifurcation may arise are also indicated in F
7. To avoid the onset of the saddle-node bifurcation and
the related instability, one should try to chooseFs ~the ac-
celerating voltage! within the ‘‘safe region’’ given by Eq.
~55!. It is easy to remove the threat of this instability fo
small-signal amplifier operation, since, for this case, the
timal value ofFs521 is within that region. However, in the
case of large-signal amplifier operation, optimal values ofFs
are less than21, and they may be located outside of th
‘‘safe region.’’ For this case, the instability may manife
itself even ifJ is relatively small, for instance, as in Fig.
~see curve 2!. Curve 3 in this figure illustrates a possibility t
suppress the instability of this type. As follows from th
initial model~25!, when the power of the input signal is larg
enough, the hysteretic loop on the resonance curve di
pears. This phenomenon is a principally nonlinear one. T
the discussed instability may appear if the amplitude of
input signal lies within an intervalAcr,Ain,Amax, where
Acr is approximately determined from Eq.~44!, andAmax can
be found numerically.

The results of this section clearly indicate that values
the control parameters, which can be used for an ampl
design, are seriously limited by instabilities of various typ
In particular, the self-excitation of oscillations and other i
stabilities are factors~but not the only ones! which limit
essentially the maximum beam current value which can
used in a particular design. Referring to Fig. 6, we note t
for Fs from the regionFs,Fs opt[21, an operating value
of the current can be large then the minimum threshold c
rent which is achieved atFs521. As is also seen from this
figure, such an increase in the current cannot be too large
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to the limitation on the minimum value ofFs imposed by the
instabilities. Due to this we accept thatGth min and I 0th min,
given by Eqs.~49! and ~50! for the single-electron interac
tion regime and by Eqs.~52! and~53! for the collective one,
are the maximum possible values of the parameterG and the
beam current for nonlinear regime of amplification.

D. Large-signal amplifier operation

Before going into detail about the large-signal amplific
tion mode, it is appropriate to remember some general p
erties of electron-wave interaction in the orotron-type tub
In the linear regime, the amplifier gain and output power
determined by local properties of the functionSm(k),
namely, by the value of its derivative calculated atk5be
@see Eq.~31!#, because any variation of the electron veloc
by the action of the field is small. In the nonlinear regim
the effect of the mean velocity decrease of the electrons i
principal importance. Introducing thecurrent propagation
constantbe cur(w,y)[v/n(w,y), we may treat this effect a
a diffusion of thebe cur(w,y) values in the wave packag
toward a peak of the spectrumSm(k) ~see Fig. 7!. The maxi-
mum value ofbe cur(w,y) is limited by the value ofk1 , since
at be cur.k1 the Cerenkov radiation condition is not fulfilled
and the electrons cannot be decelerated any more. The m
mum possible value forbe is determined by the capability o
a wave spectral component withk5be to trap into a poten-
tial well an essential portion of electrons from those enter
the interaction space during the field time period. The p
cess of trapping is a threshold phenomenon, and the am
tude of this spectral component must overcome a crit
value@33#. From Fig. 8 it is clear, that because of this thres
old, the maximum value of the difference (k12be) for m
50 is of the order ofDk'1/r y , which is the bandwidth of
the spectrumS0(k). Utilizing the estimates given above, on
can obtain the following scaling low for the maximum ef
ciency in the nonlinear interaction regime

hmax'n0l/~cry! or hmax'2p/F0 . ~56!

Such a dependence of the maximum efficiency on the wa
length or on the transient angleF0[2p(r y /l)(c/n0) has

FIG. 8. Schematic of the spectrum-shape functionSm(k) for m
50 with its maximum atk5k1 and the location of the optima
value of the beam wave number in the linear interaction reg
(be opt) and in the nonlinear regime (be).
-
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been reported with respect to various kinds of free-elect
lasers and conventional microwave tubes@8,9,34#.

Let us now consider the effect of theF0 value on the
orotron amplifier performance. In Fig. 9, maximum ef
ciency and gain are shown versusPin /P0 for various values
of F0 . The ‘‘maximum’’ hereinafter means that the param
etersFs ~the accelerating voltage! and d ~frequency of the
input signal! have been chosen to be optimum for each p
ticular set of parameters. It can be seen from Fig. 9 that w
the input power is relatively small, the efficiency and gain
not practically depend onF0 , as predicted by the linea
theory. This dependence, which is pronounced at a la
level of the input signal, leads to an increase in efficien
and gain with decreasingF0 , in accordance with the argu
ments given above. It should be noted, however, that
variation ofh andK with theF0 variation is essentially slow
compared to that of 1/F0 , even if Pin'P0 . The reason for
this is related to the fact that it is impossible to trap most
the electrons entering the resonator into a potential well d
ing a time period if the same interaction space is used
both the beam modulation by an external signal and the
celeration of the electrons by the resonator field. The la
also does not allow one to reach high values of gain a
efficiency simultaneously~see Fig. 9!, because the optimum
set of parameters for effective modulation and bunching is
general quite different from that for effectively decelerati
the electrons. To obtain high values for the efficiency~40%
and higher!, large levels of the input signal are necessa
which naturally leads to a decrease of the gain. It is obvio
that, to get rid of this problem, a preliminary modulation
the beam must be used, like in conventional klystrons
klystrons with distributed interactions. Our analysis h
shown that a dramatic improvement of amplifier perfo
mance can be obtained even by using the two-stage amp
design shown in Fig. 2~corresponding results will be pub
lished!.

However, it should be pointed out that the singl
resonator orotron amplifier may also be of practical inter
when taking into account the simplicity of its design. Hen
we will give some more details to describe its performan
An expression for the maximum output power in the sing
electron interaction regime may be written in the form

e

FIG. 9. Maximum electron efficiency~solid curves! and maxi-
mum gain~dashed curves! vs Pin /P0 for various values of the tran
sient angle:~1! F0525, ~2! F0550, and ~3! F05100 at J0

50.95,p50, andG50.
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Pout max>14«0S ueu
m D 1/2 ~q11/2!lr xQd

r y
2Q

3U0
5/2hmax~F0 ,Pin /P0!, ~57!

provided that the beam current value is equal to the m
mum possible value given by Eq.~50!, and the dimensions o
the beam cross section are optimal:a51.2n0 /v and b
50.8r x . The maximum efficiency is a function ofF0 and
the normalized input power as illustrated in Fig. 9. To illu
trate typical values of the parameters involved here, let
consider an amplifier atl53 mm with 16-kV electron beam
voltage and a resonator withr y5r x53 mm, Q51000, and
the TEM203 operating mode. In this case, the beam curr
value may be as high as 380 mA, with a density
110 A/cm2. Such a device could provide a gain of 14 d
with an efficiency of 7% and an output power of 400 W,
a gain of 8 dB with an efficiency of 18% and an outp
power over 1 kW depending on the level of the input sign
With the same beam voltage, current density, and reson
parameters, a reduction of the operating wavelength by
times, i.e., to 0.75 mm, will lead to a lowering of the ef
ciency by a factor of 2 and of the output power by a factor
8. According to Fig. 9 and Eq.~57!, in order to reduce the
effect of the wavelength on the amplifier performance, o
should try to decrease the radiusr y , correspondingly in-
creasing the beam density. In this case, it necessary to
into account that the limiting value of the beam density m
not only be determined by rising self-running oscillation
but also by other factors like emitting capabilities of a ca
ode and space-charge effects.

If the density is limited by the emission capabilities of
cathode, we then have

Pout max>~0.2/c!Aueu/mJ0r xlU0
3/2hmax~F0 ,Pin /P0!.

Here the output power depends on the accelerating voltag
to a smaller degree than in the previous case, but the de
dence on the wavelength remains the same.

To illustrate the space charge effect on the amplifier p
formance, we start from Fig. 10, where the maximum e
ciency is plotted as a function of the ratior y /lp[p/2p

FIG. 10. Maximum electron efficiency vsr y /lp[p/2p for F0

525 ~solid curves! andF0550 ~dashed curves! for different values
of the input power: ~1! Pin /P05215 dB and ~2! Pin /P05
225 dB atJ050.95,s151.2, andG50.
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@lp[2pn0 /(AG10vp) is the beam plasma wavelength#. It is
seen from this figure that the efficiency peaks at some va
of the parameterp ~plasma frequency!. The physical reasons
for this are the following. In the collective electron intera
tion regime, the electrons are trapped by the spectral com
nents from the ‘‘left tail’’ of the spatial spectrum~see Fig. 8!.
Then electrons can transfer some amount of their energ
the resonator field due to the decrease of their mean velo
like in the single-electron interaction regime. There is, ho
ever, an essential difference between these two cases, w
lies in the fact that in the Raman regime, the interaction
the slow space charge wave with any of the spatial spec
components of the field leads to an energy extraction fr
the beam@see Eq.~33!#, i.e., not only with those where
dSm(k)/dk.0 at k5be as in the single-electron interactio
regime. Due to that the decrease of the velocity of electr
during their interaction with the field can be larger, whic
can result in a rise of the efficiency. However, the spa
charge field can also affect electron-wave interaction in
opposite way, which may be approximately described as
retarding of the formation of compact electron cluste
needed for an effective deceleration of the electrons. B
effects—upgrading and degrading of the amplifier perf
mance due to the space charge field—are seen in Fig.
However, the increase of the efficiency is not too large co
pared to the single-electron interaction regime.

The presented results give also evidence that in a w
range of the plasma frequency~beam density! variation, the
space charge effects do not impose serious limitations on
efficiency. For example, for the above considered 3-m
wave amplifier with a beam density of 110 A/cm2 and a ratio
r y /lp50.05, the space charge effects are practically ne
gible. It should be noted that for the case of relatively largep
values ~practically it corresponds top>p!, the maximum
possible value of the beam current which can be used in
collective regime is given by Eq.~53!.

IV. DISCUSSION AND CONCLUSIONS

In this paper, a mathematical model of orotron-type a
plifiers has been presented, which is general enough to
scribe various amplification regimes in single-stage and m
tistage amplifiers as well as self-running oscillation
synchronization of oscillations, and frequency convers
depending on the choice of the control parameters. In
linear mode of amplification, the model equations are solv
analytically for both collective and single-electron intera
tion regimes when studying the single-resonator amplifi
Effects of nonlinearities on the small-signal operation mo
have also been studied analytically. These theoretical res
have been compared with experimental data obtained so
for single-resonator amplifiers, and both qualitative a
quantitative correspondences have been found.

Simulations of the large-signal nonlinear amplificatio
mode have been preceded by a detailed stability analys
the amplifier. Soft and hard excitations of self-running osc
lations along with arising bistable states are three main ty
of instability of the amplifier. The first two of them impos
limitations on the maximum value of the gain parame
~beam current value!, which can be used in the amplifie
The third one is related to anharmonic properties of the re
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nator loaded by the beam. The bistability may occur in so
regions of the amplifier operation zone with respect to
accelerating voltage, even if the parameterG is essentially
lower than its threshold value.

It should be emphasized, however, that in practical am
fiers additional instabilities may arise due to the interact
of resonator modes. So far this interaction has been o
studied with respect to the stability of orotron oscillato
~see, e.g., Refs.@13,14#!. The corresponding analysis wit
respect to orotron amplifiers is an unsettled problem.

The investigation of the large-signal amplification mo
has shown that, in the single-resonator amplifier design,
impossible to simultaneously obtain the maximum poss
values of the efficiency and large values of the gain. This
because the effective bunching of the beam and the dece
tion of the electrons cannot be arranged within a single
teraction space beam, and the deceleration of the elect
cannot be arranged within a single interaction space.
natural solution of the problem lies in the application of
least a two-stage amplifier in order to separate these
cesses. However, even a single-resonator amplifier is of p
tical interest, especially taking into account the simplicity
its design and fabrication, the ease of cooling, and the p
sibility to operate it in the millimeter- and submillimete
wave bands, and probably even above. For example, a 3
wave amplifier can provide a gain of 14 dB with an ef
ciency of 7% with a 16-kV beam. The efficiency and t
output power of the amplifier grow up with a decrease of
radius of the field spot, which means an effective length
the interaction space. Such a dependence on the length o
interaction space is typical of various types of Cerenkov-ty
devices. In this respect, the orotron shows an obvious ad
tage over classical devices like the klystron with distribu
interaction, where the interaction length coincides with
geometrical length. In the orotron, the length of the inter
tion space—the radius of the field spot—is controlled by
curvature of the upper mirror and by mirror separation, a
due to it the geometrical length of the grating and the dim
sions of the mirrors, can be essentially larger. This provi
a possibility to choose these dimensions according to o
demands, for example, related with cooling or providing
desired value of theQ factor.

It should be noted that with decreasing the radius of
field spot, the beam density should be increased to provi
high level of the amplifier performance. In this connectio
an important result is that the space charge field effects p
tically do not impose limitations on the maximum value
the beam current which may be used in the orotron amplifi
This opens an additional possibility to operate the orot
amplifiers at rather short wavelengths.
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APPENDIX: NORM CALCULATION

We give an example of the norm calculation for an ar
trary quasi-TEMsmq mode of a semispherical open resona
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with a grating similar to that widely used in orotron oscill
tor design@1,2,4# ~see also Fig. 1!. In the general case, th
norm is defined as

Nr5«0E
V
EW r•EW r* dV. ~A1!

The expression for theEry component of the field is given
by Eq. ~2!. The other nontrivial field components, which a
Hrx andErz , can be easily found from Maxwell’s equation

When performing the integration in Eq.~A1!, it is pos-
sible to neglect the direct contribution from the slow wave
This is apparent from the fact that these waves occup
small volume compared to the harmonic of the Smith-Purc
radiation, and because their amplitudes are smaller than
for slow-wave harmonics~see below!. As a result, we have

Nr>«0A0
2E

V
Cs

2~x!Cm
2 ~y!cos2 kr~z2D !dV. ~A2!

Using expression~7! for the normalized coefficientA0 , we
transform Eq.~A2! to a form

Nr5

a0
2«0E VCs

2~x!Cm
2 ~y!cos2 kr~z2D !dV

4a1
2F E SL~x,z!Cs~x!exp~2ug1uz!dx dyG2 .

~A3!

The integration in the numerator is performed over the wh
volume of the resonator, and that in the denominator is p
formed over the cross section of the beam. The ratio of
harmonic amplitudesan /a0 can approximately be deter
mined by using the model of an infinite~in x and y direc-
tions! grating. This model yields@26#

an

a0
5

sin~krh!sin~pnd/l!

pnAcos2~krh!1~d/ l !2 sin2~krh!
, ~A4!

wherel is the grating period, andd andh are, respectively,
the width and depth of the grating grooves.

The efficiency of both the orotron oscillator and amplifi
rises with an increase of the parameterG. SinceG}1/Nr ,
such an oscillatory system is optimum for the orotron
which Nr reaches a minimum value. The physical reason
this stems from the fact that the norm inversely depends
the intensity of the slow wave interacting with the beam@see
Eq. ~A3!#.

It follows from Eqs.~A3! and~A4! that the optimal values
of the groove depth are

h5l/41ln/2 ~n50,1,2, . . . !, ~A5!

when the ratioa1 /a0 becomes

a1 /a05sin~pd/ l !/~pd/ l !. ~A6!

Let us now specify the model for the electron beam. W
assume that the whole beam, having a homogeneous de
distribution, is concentrated in a cross sectionS of rectangu-
lar form, which is described as

0,z,a, 2b/2,x,b/2
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with a and b the thickness and width of the beam, respe
tively. In this case, the functionL(x,z) reads, in accordanc
with the normalization condition~8!,

L~x,z!5 H1/~ab! at x,zPS
0 elsewhere, ~A7!

Substituting Eqs.~A6! and ~A7! into Eq. ~A3!, we arrive,
after some transformations, at the expression

Nr5
«0bryD

8 S 1

sin2~krD !
1

cotan~krD !

krD
DxxxyxzQd .

~A8!

Here

xx5uE
2`

`

Cs
2~ x̃ !dx̃ F E

2u/2

u/2

Cs~ x̃ !dx̃ G22

,

xy5E
2`

`

Cm
2 ~j!dj,

xz5
s1

2

@12exp~2s1!#2 , Qd5F pd/ l

sin~pd/ l !G
2

, ~A9!

where u5b/(2r x), x̃5x/(2r x), and s152pa/ l ( l !l),
j5y/r y . Note that the integrations in Eq.~A9! are per-
formed in infinite limits rather than in finite ones. Such
substitution of the limits is possible because of the expon
tial decay of the resonator field to zero when approaching
resonator boundary.

For a resonator with a grating partially covering the b
tom mirror in thex direction, the mode withm50 and s
52 is the principal one, and for this case the coefficientsxx
andxy become

xx52uA2/p@erf~u!2~4u/Ap!exp~2u2!#22, xy5Ap/2,
~A10!

where erf(u)5(2/Ap)*0
u exp(2t2)dt.

Consideringxx as a function of the normalized bea
thicknessu, we find that this function possesses two minim
iz

on

s.

s.

k.
-

n-
e

-

at u50.4 and 2, and consequently there are two values of
beam width, which may be used in practice:b50.8r x and
b54r x . Theb value ofb50.8r x is actually chosen in prac
tical devices@2#, so that it is used in our estimates.

From Eq.~A4!, it follows that the norm depends on th
distance between the mirrorsD in a resonant way. The mini
mum is attained atD5ql/21l/4, whereq51,2,3, . . . is
the number of half-waves kept between the mirrors. Provid
that the resonator and beam parameters are chosen t
optimum, as indicated above, the norm of the quasi-TEM20q
mode becomes equal to

Nr50.4«0l~q11/2!r xr yxzQd . ~A11!

The coefficientsQd andxz take the finite width of the grat-
ing grooves and of the beam thickness into account, res
tively. With the norm value given by Eq.~A11!, the param-
eterG reads

G>
0.8WQryI 0

r x~q11/2!xzQdU0
. ~A12!

Note that usuallyr x5r y , and thus theG value does not
directly depend on the dimensions of the field spot for so
chosen value of the beam current value. In many cases, h
ever, the beam densityJ0 is a limiting factor, and we should
put I 0 into Eq. ~A12! as 75abJ0 . Now it can be seen from
Eq. ~A13! that there is an optimum value of beam thickne
which is given by

s151.2 or a50.6l /p>1.2n0 /v r . ~A13!

It is easy to check that the optimum value of the beam wi
(b50.8r x) found above is also optimum for this case. Wi
these values ofa andb, we may rewrite expression~A12! in
the following form:

G>S ueu
m D 1/2 W

c

0.06J0Qryl

~q11/2!QdU0
1/2. ~A14!

The norm of oscillation for this case reads

Nr51.2«0l~q11/2!r xr yQd . ~A15!
t.
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